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5)
6

September 4. Randomized minimum cut (Chapter 4).

. September 9. Random graphs (Chapter 5).
. September 11. Randomized rounding (Chapter 6).

LAll future dates are tentative. Lecture materials and video recordings can be found at the end of
each chapter.
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7. September 16. Online algorithms (Chapter 7).

8. September 18. Distinct elements and moment estimation (Chapter 8).

9. September 23. Dimensionality reduction (Chapter 9).

26.
27.
28.

()

. September 25. Approximate nearest neighbors and LSH. (Chapter 10).
. September 30. Line embeddings and sparsest cut (Chapter 11).

. October 2. Randomized tree metrics (Chapter 12).

. October 7. Sampling geometric range spaces (Chapter 13).

. October 9. PAC learning (Chapter 14).

October 14. Fall break (October 13-14).

. October 16. Randomized greedy algorithms (Chapter 15).

Saturday, October 18. Purdue Half-Marathon and 5K

Thursday, October 23, 8~10PM, WTHR 104. Midterm 1. (See Chapter C for
scrambled problems.)

. October 28. Entropy and error-correcting codes (Chapter 16).
. October 30. Lovasz local lemma (Chapter 17).

. November 4. Pagerank (Chapter 19).

. November 6. Connectivity and electricity (Chapter 20).

Saturday, November 8. Monumental Marathon in Indianapolis

. November 11. Spectral analysis of random walks (Chapter 21).

. November 13. Mixing times, conductance, and sparsest cut (Chapter 22).
. November 18. Deterministic log-space connectivity (Chapter 23).

. November 20. Reducing randomness with random walks (Chapter 24).

. November 25. PCP Theorem (Chapter 25).>

November 27. Thanksgiving (November 27)

. December 2. PCP theorem (cont’d).

December 4. Discrepancy via Gaussian random walks (Chapter 26).
December 9. Sparsification (Chapter 28).

December 11. Last day of class. TBD.

Final. Wednesday, 7-9PM, Krannert G016

2November 25 is the last date to withdraw with a “W” grade.
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Chapter 0

A little probability theory

We need probability theory to understand randomized algorithms. Here is a minimal
amount of background to get us started. The reader may have seen these topics
before. Subsequent chapters develop probability theory further alongside algorithms
and applications.

0.1 Events and probabilities

Suppose we flip a coin. As the coin rotates in mid-air, at its vertical peak, we pause
time. Will the coin land heads or tails? Obviously, we don’t know yet. Yet we state
without ambiguity or hesitation that half the time it will land heads, and half the time
it will land tails.

What do we mean when we say that “half the time it will land heads”? There is
of course only one coin, and we can’t split the coin in half. Rather, we imagine that
if we repeated the experiment many times, then half the coin tosses should come up
heads.

This simple example, which we all understand thoroughly, points to a deeper
feature: probability interprets fractional values as discrete ones. Here, “half heads”
does not mean that “half the coin will come up heads”, which is total nonsense; rather
it means that half the time the coin will come up heads.

The formal rules of probability are simple and intuitive. (The tricky part is
sticking to them.) Probability theory assumes an uncertain world where events occur
with fixed (but not necessarily known) numerical probabilities. Each event A has a
probability between 0 and 1, denoted

P[A] € [0,1].

For every event A, there is the complementary event, A, of A not occurring. We

11
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always have

P[A] + P[A] = 1. (1)
Joint events. For any two events A and B, one can A B
define the conjunctive event that both A and B occurs,

denoted
“AANB” or “ANB” or “A and B”.

It is common to write P[A, B] as a shorthand for P[A A B].
In general, given A and B, there are four disjoint events
induced by their combination:

1. AN B: The event that both A and B occur.

2. A A B: The event that A occurs and B does not.

3. A A B: The event that A does not occur and B does.
4. A A B: The event that neither A nor B occcurs.

The four joint events listed are mutually exclusive — at most one of them can be
realized — and exhaustive — at least one of them will be realized. So we have the
following identity:

P[AAB|+P[ANB|+P|AAB|+P[AANB| =1

Suppose event A occurs with positive probability. Whenever A occurs, then of
course exactly one of B occurs or B occurs. So we have

P[A] = P[A, B + P|A, B|.
If we divide both sides by P[A], we have

P[4, B]  P[A B

Y=par TP

This equation looks probabilistic — we have two nonnegative terms summing to 1. The
first term on the right-hand side, P[A, B]/ P[A], can be interpreted as follows:

of the times that event A occurs, B also occurs P[A, B]/ P[A] fraction of
the time.

12
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We call this the conditional probability of event B conditional on event A, denoted
P[B | A] and defined as the ratio

P[A, B]

P(BIA)= "5y

Likewise we have the conditional probabilities P {B ‘ A}, P [B ‘ /_1}, P [B ‘ /q, and so
forth.
" We always have

P[A A B] < min{P[A], P[B]}
(see exercise C.26). It is generally not true that
PlA[B] = P[] (2)

for two events A and B. (2) is equivalent to the same equation with A and B flipped,
as well as the identity

P[A A B] = P[A|P|B] (3)

Events A and B are said to be independent events in the special case where Eqs. (2)
and (3) holds.

Unions of events. We also have the disjunctive event that either A or B occurs,
denoted

“AV B” or “AUB” or “A or B”.
If AV B occurs, then exactly one of the following events occurs:
ANB, ANB, AN B.

Consequently we have

P[AV B] = P[AAB]+ P|AAB| +P|AAB|.

Recall that P[A] = P[A A B]+P|A A B|, and similarly for P[B]. Adding P[A A B
to both sides of the identity above gives
P[AV B]+ P[AA B] =P[A] +P[B|.

This identity reflects a venn-diagram, so to speak, where the two regions A and B
“sum” to their union AV B and their intersection A A B.

Dropping the nonnegative term P[A A B| from the identity above gives rise to the
following extremely useful union bound.

13
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Lemma 0.1 (Union bound). For any two events A and B,
P[AV B] < P[A] + P[B],

with equality iff P[A AN B] = 0.

0.2 Random variables

A finite random variable models an unrealized and uncertain object X that takes one
of a finite set of values, {x1,...,zx}." For each outcome z;, “X equals z;” is an event,
with a fixed probability, denoted P[X = x;]. These probabilities sum to 1:

For example, we can describe a coin toss as a random variable X € {heads, tails}.
If the coin comes up heads, then X = heads. If the coin comes up tails, then
X = tails. For a fair coin we have

1
P[X = heads| = P[X = tails| = 5

Note that these two probabilities sum to 1.

If we have two random variables X € {z1,..., 2} and Y € {y1,...,ys}, then their
product (X,Y’) forms a random variable in the set {(z;,y;) ;i =1,...,k, j=1,...,(}.
We have probabilities of the form

PX =uxz,Y =Y]].
It is not generally true
PX =uxz,Y =y =P[X =] P[Y = y]

When the equation above holds for all z; and y;, then X and Y are said to be
independent. This is equivalent to saying that for all x; and y;, the events X = x;
and Y = y; are independent.

!One can also define continuous variable (e.g., that take values continuously between 0 and 1),
where sums are replaced by integrals.

14
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For example, suppose X,Y € {heads, tails} both describe coin tosses. If they
described different coin tosses, then they would be independent random variables, and
each combination of heads and tails would occur with probability .25. That is,

P[X = heads, Y = heads] = P[X = heads, Y = tails]
1
= P[X = tails, Y = heads| = P[X = tails, Y = tails| = 7

Thus X and Y are independent random variables. If they modeled the same coin,
then we would have

1
P[X = heads, Y = heads] = P[X = tails, Y = tails| = 3

while
P[X = heads, Y = tails] = P[X = tails, Y = heads] = 0.

Here, X and Y are not independent.

0.3 Averages

When a random variable X takes on real values, we can have a well-defined and
quantitative notion of an “average”, more formally called the expected value.

Definition 0.2. Let X € R be a real-valued random variable that has a finite set of
possible values. Then the expected value of X, denoted E[X], is the weighted sum

E[X]% Y P[X =4] -

where the sum is over all values of x where P[X = x] > 0.

For continuous random variables, the sum would be replaced by an integral.

The average quantity of a random variable is very intuitive; the reader is likely
used to discussing averages in the sense defined above. (e.g., the average midterm
score.) The following identity, called linearity of expectation, is perhaps less intuitive;
however it follows rather plainly from the definition of expectation.

Theorem 0.3. (Linearity of expectation.) Let X,Y € R be two random variables.
Then

E[X +Y] = E[X] + E[Y].

15
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The proof of linearity of expectation is given as exercise C.46. The reader may
want to first consider the simple case where X € {1, x2} takes on exactly two values,
and Y € {y1,y2} takes on exactly two values. One can generalize to finite sets from
there.

Observe that linearity of expectation does not make any assumptions about how
X and Y are structured or related. This makes linearity of expectation extremely
useful and often leads to surprising observations.

A simple example of linearity of expectation is as follows. Consider a population of
people with various heights. Let X and Y be two quantities obtained by the following
experiment. Draw one person uniformly at random. Let X be the length from the
waist of this person to the top of their head. Let Y be the length from the waist of
this person to the ground. X + Y gives to the total height of the person. Note that
X and Y are highly dependent, since they both measure the same (randomly drawn)
person. Linearity of expectation says:

(average height) = <

E[X 4 Y]

average length> ( average length )
. + . .
from waist up from waist down

E[X] E[Y]
Of course, this makes total sense.

Conditional expected values. We also have conditional expected value analogous
to how we have conditional probabilities. For a random variable X and an event A,
E[X | A] denotes the expected value of X conditional on A occurring. Formally we
have

E[X|A] =Y 2P[X = x| Al.

The reader should verify that
E[X] = E[X | A]P[4] + E[X | A] P[A]

for all events A.
Now, suppose we have two random variables X and Y, and a real-valued function
F(X,Y) of these variables. Then by definition we have

BIX.Y) =X fla.y)PIX =2, =y, (@)
’ (z.)
Here we have annotated X, Y under the E|- -] to emphasize that the randomization

is over X and Y jointly. On the other hand consider the following nested expected

16
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value,
B[E/(X,Y)| X]].

This version describes the average of an experiment where we first observe X, and
then conditional on X, we observe Y and evaluate f(X,Y’). Formally the expression
expands out to

])E(JE[f(XY]X} STBUX,Y) X = 2] PX = o]
ZZwa,y PlY =y|X =2]P[X =a]. (5)

Since P[X =2,V =y] = P[Y =y | X = 2] P[X = z|, the RHSs of Eqgs. (4) and (5)

are equal, hence

ELF(XY) = BBl (x.Y) | X]].
(See also exercise C.3.)

A very nice trick, called the law of iterated expectations, is useful in the following
situation. Suppose we had a random variable X for which we want to evaluate E[X].
Suppose it is hard to analyze E[X] directly, but for some contextual reason there is a
second random variable Y for which the conditional expectation E[X | Y] is better
understood. Then E[X] might be computed indirectly via

ELY] = B Y] =B[ELY|V]]

For a simple example (found on the internet), suppose we wanted to estimate the
probability that it rains tomorrow. Thus let X = 1 if it rains tomorrow and 0 if not;
E[X] is the probability that it rains. Suppose we also know the probability that it
will rain today, as well as:

1. the probability of it raining tomorrow if it rains today, and
2. the probability of it raining tomorrow if it does not rain today.

Let Y =1 if it rains today and 0 if not; in terms of X and Y, we are assuming that
know E[Y]| = P[Y =1], E[X|Y =1], and E[X |Y =0]. Then we can obtain the
probability of it raining tomorrow, E[X], via the law of iteration expectations, as

E[X] :E[E[Xm} — Py = |E[X|Y = 1]+ P[Y = 0 E[X|Y =0].

Y [ X
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Markov’s inequality. Markov’s inequality is about how much a nonnegative random
variable can greatly exceed its expectation.

Lemma 0.4 (Markov’s inequality). Let X > 0 be a nonnegative random variable,
and o > 0. Then

P[X > o] <E[X]/a.
Proof. Since X is nonnegative we have
EX]=E[X|X >a]P[X > o]+ E[X|X <ao]P[X <a] >aP[X > q]
for all a > 0. O]

Markov’s inequality is very intuitive. Consider for example o = 2 E[X]. Then
Markov’s inequality states that for nonnegative X, the probability that X is at least
twice its average is at most 50%. This should be as obvious as the fact that no more
than half the population can be twice as wealthy as the average individual. Or that
no more than half the class can get at least twice the average score on the midterm,
no matter how low the average. Etc.

0.4 Exercises

Additional exercises may be found in [MR95, Chapter 1].

Exercise 0.1. Prove or disprove: For any two events A, B,

P[A A B] < min{P[A], P[B]}.

Exercise 0.2. Prove or disprove: For any two events A and B, if P[A] + P[B] > 1,
then P[A A B] > 0.

Exercise 0.3. Let A and B be two events. Prove that the following three identities
are all equivalent:

P[A|B]=P[4], P[B|A]=P[B], P[A B|=P[AP[B].

(That is, if A and B satisfies any one of the identities above, then it automatically
satisfies the other two.)

18
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Exercise 0.4. Let A and B two events. Prove or disprove that A and B are
independent iff A and B are independent.

Exercise 0.5. Prove linearity of expectation (Theorem 0.3).

Exercise 0.6. Prove or disprove: for any two random variables X, Y, and real-valued
function f(X,Y), we have

E[E[/(X.Y)|X]| = B[B[F(X. )|V

Exercise 0.7. Let A and B be two events with P[A] + P[B] = 1. Prove or disprove:
P[Av B]=1iff P[AA B] =0.

Exercise 0.8. Suppose you only have access to a coin that flips heads with a known
probability p, and tails with (remaining) probability 1 — p. Describe and analyze a
protocol that uses a limited number of tosses of this biased coin in expectation (the
smaller the better) to simulate 1 coin toss of a fair coin. (The expected number of
biased coin tosses you make may depend on p.)

Exercise 0.9. Recall that when we roll six-sided dice, the dice samples an integer
between 1 and 6 uniformly at random. Let us call an unordered pair of dice “lucky”
if one of them is a 1 and the other is a 6.

If we roll 6 independent six-sided dice, how many lucky pairs do we expect? Note
that a single dice may appear in more than one lucky pair. For example, the following
roll of six dice has 2 lucky pairs amongst them.

Exercise 0.10. Suppose you repeatedly flip a coin that is heads with fixed probability
pe(0,1).
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1. What is the expected number of coin flips until you obtain one heads?* Prove

your answer.”

2. What is the expected number of coin flips until you obtain two heads? Prove
your answer.

3. For general k € N, what is the expected number of coin tosses until you obtain

k heads? Prove your answer.

Exercise 0.11. Let X, Y be two independent and identically distributed real random
variables. Prove that P[|X — Y| <2] <3P[||X - Y| < 1]].

2If the first toss is heads, that counts as one coin flip. If the first toss is tails and the second toss
is heads, that counts as two coin tosses. Etc. It may be helpful to first think about a fair coin, where
p=1/2.

3Hint: There is an easy way and a hard way to solve this problem.
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Chapter 1

Randomized searching and sorting

1.1 First randomized algorithms

We introduce randomized algorithms via 3 basic problems: 3-SAT, sorting, and
selection. For each we present randomized algorithms that are essentially optimal (if
one does not mind that they are randomized). They are also very simple to describe
and code. They might seem tricky to analyze, as the analysis involves probabilities
and sorting through nondeterministic outcomes. We will see how focusing on ezpected
performance renders the analysis surprisingly clean.

Let us briefly introduce the algorithms first as their striking simplicity may help
motivate us to learn the mathematical tools we need to analyze them. We first present
the algorithms, all strikingly simple, and then we will analyzing each one separately.

1.1.1 3-SAT.

We start with 3-SAT. The input to 3-SAT consists of a Boolean formula in conjunctive
normal form (CNF) with 3 (distinct) variables per clause. For example,

f(l'l,l'g,l‘g) = (IL‘l V T2 V .173) A (Zfl V ZZ‘Q V i’g) A\ (fL’l V [f'g V IL‘3) A\ (i’l V T2 \V4 ZL'3)

is a 3-SAT formula with m = 4 clauses and n = 3 variables. It is satisfied by the
assignment (x1,xq,z3) = (t,f,t). (t denotes “true” and f denotes “false”) In the
3-SAT problem, we are given a 3-SAT formula f(xy,...,z,) with m clauses and n
variables and want to find a satisfying assignment.

3-SAT is the quintessential NP-Complete search problem, and there is no poly-
nomial time algorithm to solve it unless P = NP [CooT71; Lev73]. But this does
not prevent us from trying to approzrimate the problem. The goal is now to find an
assignment that satisfies as many clauses as possible. Of course an exact algorithm
for this maximization version implies a polynomial time algorithm for the decision
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random-SAT(f(x1,...,2,))

1. For each i € [n], draw x; € {t,f} independently and uniformly at random.
2. Return z1,...,z,.

Figure 1.1: A randomized approximation algorithm for SAT.

version. Instead we will design algorithms that do not guarantee the maximum, but
are competitive up to a multiplicative factor when compared to the optimum solution.

Given a SAT formula f, let OPT denote the maximum number of clauses that are
satisfiable. For o € [0, 1], an a-approzimation algorithm for SAT is an algorithm that
produces an assignment that satisfies at least a« OPT clauses. While obtaining an
exact algorithm is NP-Hard, for fixed o < 1, it is not necessarily NP-Hard to obtain
an a-approximation algorithm for SAT.

Here is a simple randomized approximation algorithm for SAT. Given a formula
f(xy,...,x,), for each variable x;, flip a fair coin and assign x; = t or z; = f
accordingly. (See Fig. 1.1 for pseudocode.) We will show that, on average, this
random assignment satisfies at least (7/8)m clauses out of m total. Moreover, we will
be able to derandomize the above algorithm and obtain a deterministic algorithm
that (always) satisfies at least (7/8)m clauses.

The randomized algorithm is extremely simple and basically oblivious to the
input. Surely it isn’t very good. But in fact it is the best possible polynomial time
algorithm unless P = NP. The PCP theorem states that for all constants ¢ > 0,
getting better than a (7/8 4 ¢)-approximation to 3SAT is NP-Hard. “PCP” standards
for probabilistically checkable proofs. The PCP theorem gives similar hardness of
approzimation results for many other problems besides SAT. The PCP theorem (as
the name suggests) has strong connections to randomized algorithms. We will discuss
related randomized topics, and maybe parts of the proof of the PCP theorem, later in
the course.

Thus in this lecture we will show the first part of the following theorem. Topics in
later chapters will hopefully shed some light on the second half of the theorem.

Theorem 1.1. There is a polynomial time algorithm that given any 3-SAT formula
computes an assignment that satisfies at least %th of the clauses. Moreover, for all

e >0, a polynomial time approrimation algorithm with approximation ratio (% + e)
implies that P = NP.
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quick-sort(A[l..n])

/* For simplicity we assume all the elements are distinct. Otherwise, break ties consistently. */
1. If n <1 then return A.

Select @ € [n] uniformly at random.

BJ1..k] + recursively sort the set of elements less than A[i].

C'[1..4] < recursively sort the set of elements greater than Ai].

. Return the concatenation of B, A[i], and C.

g A w N

Figure 1.2: A randomized sorting algorithm.

1.1.2 Sorting.

The next problem we discuss is sorting. The goal is to take an unordered list of
n comparable elements (e.g., numbers) and return them as a list in sorted order.
The reader likely knows that the merge-sort algorithm runs in O(nlogn), and that
there is a (nlog n)-time lower bound for any sorting algorithm in the comparison
model. Here we will study a randomized algorithm that is remarkably simple, called
quick-sort, that is often the preferred one in practice. The idea is very simple: select
an element uniformly at random out of the list to serve as a pivot. Divide the elements
into those smaller and larger than the pivot, and recurse on both halves. See Fig. 1.2
for pseudocode.

What is the worst-case running time of quick-sort? It is important to clarify
what we mean by “worst-case”. Observe that the running time of quick-sort is
proportional to the total number of comparisons made by the algorithm. It is certainly
possible that the algorithm makes 2(n?) comparisons. (How?) So in a limited sense
that algorithm has a worst-case O(n?) time.

As the algorithm is randomized, a more useful measure is the average number of
comparisons. We will show that quick-sort takes O(nlogn) time on average against
any input. This is still a worst-case analysis in the sense that it holds for all inputs.
(This is not to be confused with the performance of an algorithm against a randomized
input from a fized distribution — that is called average case analysis.) We will also
show that the algorithm takes O(nlogn) time with extremely high probability. We
prove, in Section 1.3:

Theorem 1.2. Given a list of n comparable elements, quick-sort returns the elements
in a sorted list in O(nlogn) expected time and with high probability.
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quick-select(A[l..n], k)

/* The goal is to find the rank k element in A[l..n|. We assume for simplicity that all the
elements are distinct. %/

1. Randomly select ¢ € [n] uniformly at random.
Compute the rank ¢ of Ai]. // O(n)
If £ = k, then return Ald].

AW N

. If £ > k, then recursively search for the rank k element among the set of £ — 1 elements less
than A[¢], and return it.

5. If £ < k, then recursively search for the rank k& — ¢ element among the set of n — ¢ elements
greater than A[(], and return it.

Figure 1.3: A randomized algorithm for selection.

1.1.3 Selection.

The last problem we mention is selection. The input, similar to sorting, includes an
unordered list of n comparable elements. Given an index k € [n], the goal is to find
the kth smallest element in the list.

The obvious solution is to sort the list, which takes O(nlogn) time. Famously,
one can do better: the “median-of-medians” divide-and-conquer algorithm of Blum,
Floyd, Pratt, Rivest, and Tarjan [BFP+72] runs in O(n) time. This algorithm is a
bit tricky, both to describe and to analyze. Here then is a simpler alternative, which
is similar to quick-sort: pick a pivot uniformly at random, and compute its rank ¢.
Depending on whether k = ¢, k < ¢, or k > /, either return the pivot, recurse on the
subset of elements less than the pivot, or recurse on the subset greater than the pivot.
See Fig. 1.3 for the pseudocode.

We will prove the following theorem which states that quick-select takes O(n)
time in expectation. Or rather, you will prove it, in exercise C.31, employing the new
tools gained from analyzing randomized SAT and sorting.

Theorem 1.3. quick-select(A[l..n|,k) returns the rank k element in O(n) time
in expectation and with high probability.

1.2 Randomized approximations for SAT

Recall the very simple algorithm (Fig. 1.1) we want to analyze: given a 3-SAT
formula f(zq,...,x,), independently flip a fair coin for each z; and assign z; €
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{t, f} accordingly. We claim that this algorithm gives a (7/8)th approximation (in
expectation).

Consider a single clause; e.g., (x1 V Iy V 23). Of all 8 ways to assign the three
variables (z1,xs, 23 in the example) values in {t, f}, there is only one way that does
not satisfy the clause. That is,

each clause is satisfied with probability 7/8.

Simple enough. However we are interested not in the outcome of a single clause,
but the total number of clauses that are satisfied. That is to say we are analyzing
many clauses and not just one. As a warm up, suppose we had two clauses, say C;
and Cy. Let Fy (resp. Ey) denote the event that C (resp. Cy) is satisfied. Here the
analysis varies depending on whether C; and C5 share variables.

In the simplest case, suppose C; and C5 have no variables in common. Then
C7 and C5 depend on completely different coin tosses, so the events F; and Ej are
independent. Thus, the probability that they are both satisfied is

PlE:, B = (B PIE] = (1)

Likewise one can obtain probabilities that exactly one clause, or neither clause, is
satisfied, arriving at the following table of joint probabilities.

P['7 ] ‘ Fy EZ
B, |49/64 7/64
B | 7/64 1/64

By direct calculation’ one will find that 7/4 clauses are satisfied (out of a maximum
of 2) on average.

The calculations above were clean insofar as C; and Cs are disjoint. What if they
shared variables? Suppose for example they both had a variable x3 in common; say,

Cl = (1‘1 V .’Z'Q \/1‘3) and CQ = ($3 VgV ii'5).

Now x3 has greater importance: if x3 = t, then both C} and C5 are immediately
satisfied; if tails, then both C} and (5, independently, need one of two coins to come
up in their favor to be satisfied.

It is helpful in this example to map out the scenarios depending on the outcome
of x3, via conditional expectations. (We can imagine x3 is flipped first, even if it is
actually not.) For example, for E; A E,, we have

P[El, EQ] = P[El,EQ | T3 = t] P[l’g = t] + P[El, EQ | T3 = 'F] P[Ig = 'F]

19 (49/64) + 7/64 + 7/64 = 7/4.
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Now, we have Pz = t] = Plzs = f] = 1/2. If 3 = t, then E; A E, always occurs.
Now consider the case where x3 = f. Since C'; and Cy have no overlap besides x3, the
events F; and FEs, conditional on x3 = f, are now independent. Thus

3 2
P[Ey, By |5 = f] = P[E) | 23 = f] P[Ey |23 = f] = (4) _

Altogether we obtain

1 3\?2 1
PlE,, B =1-— -] - ==2 .
[1, 2] 2+<4> 5 5/36

Likewise, one can compute remaining values P [El A EQ}, P [El A EQ}, and P [El A Eg}
from the 2 x 2 table. Then by direct calculation one obtains the expected number
of clauses that are satisfied in this scenario. If the reader works out the calculations
they will find that the expected number is (again) 7/4.

Besides the scenarios above, we can also have the cases where C'; and Cs overlap
at 2 variables, or all 3. We also need to consider scenarios where a variable x appears
in C while its negation z appears in (5. Each of these situations require another
series of calculations. The point is that its getting messier and messier, even with just
two clauses.

Now imagine trying to analyze three clauses C, Cs, Cs. The number of ways the
three clauses can relate grows combinatorially. In general, over m clauses C4, ..., C),,
there are just too many possible scenarios to calculate everything exactly. The
more general question is: how do we precisely analyze a randomized mechanism that
encompasses a combinatorial explosion of possibilities?

The key insight is that we are only interested in the average number of clauses
satisfied. Observe that the average, being a reductive aggregate statistic, does
not reveal much information about the fine-grained complexities about the clauses.
Perhaps all these details are not necessary to assess the average either.

For each clause C;, let Y; € {0,1} be the random variable indicating whether or
not C; is satisfied:

Vi — 1 if C; is satisfied,
‘ 0 otherwise.

Thus YI" | Y; is the number of clauses satisfied, and we seek the quantity E[>-"", Y;].
As established above, it is easy to see that

E[Y;] = 7/8
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for each 7. The difficulty is in understanding how to analyze the sum of the Y;’s
jointly as they may be strongly connected with each other. Thank goodness, then, for
linearity of expectation: the expected sum equals the sum of expectations. By linearity
of expectation, we have

E[.ml Yi] _ iE[YJ —m

1=

In the final analysis we pay no attention to the intricate relationships among the C;’s.
Such is the power of linearity of expectations, to help us see in the aggregate what is
far too complicated to understand in detail.

It is easy to extend the above to k-SAT for any k& € N, where each clause has
exactly k variables, and obtain the following.

Theorem 1.4. For all k € N, there is a randomized (1 — 1/2%)-approzimation
algorithm for k-SAT.

Derandomization. Its hard to imagine a more random algorithm than flipping a
coin for each variable. Can we obtain a (7/8)-approximation factor deterministically?
The answer is yes, and perhaps more surprisingly, we will use the randomized algorithm
as a guide.

As before, for each clause Cj, let Y; indicate whether or not a clause is satisfied.
Let Z =>",Y;. When all the variables are assigned uniformly at random, E[Z] =
(7/8)m.

Among many other decisions, a deterministic algorithm must decide whether to
set 1 = t or 1 = f. We already know that a uniformly random choice is pretty good
on average. Generally speaking, if an average of choices is good, then at least one of
those choices ought to be good as well. We just need a way to distinguish the better
choice.

Let us be more precise. Suppose all the x;’s are assigned values independently and
uniformly at random. By conditional expectations we have

E[Z]:;E[Z|x1:t]+;E[Z|x1:f].

Rearranging, we have
1
max{E[Z |z, = t|,E[Z |z, = f]} > i(E[Z |zy =t]+ E[Z |z, = f]) > E[Z].

That is, fixing either 1 = t or z; = f, and then randomly flipping the coins for the
remaining variables, will preserve the expected number of satisfied clauses.
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To decide which choice is better, we need to be able to compute the conditional
expectations E[Z |z, = t] and E[Z | 21 = f]. Fortunately this is easy to do. Consider
the case r; = t. By linearity of expectation we have

E[Z|21 =t = S E[Y; |2 = 1]

i=1
For a particular Y;, we have
1. E[Y; |z, = t] = 1 if x; appears (unnegated) in the ith clause, and

2. E[Y; |z, = t] = 1—27% otherwise, where k; is the number of undecided variables
remaining.”

Thus we can calculate E[Z | x; = t] and similarly E[Z | z; = f] exactly, and identify
the choice of xy maximizing the conditional expectation.

Fixing 7 to be this value from now on, we can now identify the best choice for z5 in
the same way, and continue in such a fashion to make deterministic choices for all x;’s.
To make this precise, suppose we have already identified values aq, ..., ax € {t, f} for
x1,...,Ty, respectively, such that

ElZ|z,=ay,...,z = a;] > (7/8)m.

Consider xy1. We have

ElZ |z =ay,...,02 = a] = [Z|x1=a1,...,05 = ag, Tpy1 = t]

1
- E
2

1
+ §E[Z|:z:1 =a1,...,Tp = Ak, Tpy1 = T,
hence setting either x5,; = t or x;,; = f preserves the expected value of Z. We
can compute both conditional expectations explicitly, and identify the better choice,
setting this value to axy; accordingly. Continuing in this fashion, we will eventually
identify n values aq,...,a, such that

flay,...;an) =E[Z |2y =ay,...,2, = a,] > (7/8)m,

as desired.

The algorithm we have described is entirely deterministic. It uses the estimates of
imagined randomized experiments to make its deterministic choices, and the estimates
can calculated deterministically thanks in part to linearity of expectation.

2For 3-SAT, k; =2 if z; € C;, and k; = 3 otherwise.
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1.3 Randomized sorting

We now move on to sorting. Recall the simple quick-sort algorithm from the
introduction, and given in Fig. 1.2. To recap, quick-sort is a recursive algorithm
where, for each subproblem, we select one of the elements uniformly at random as a
pivot. We divide the remaining elements into those that are smaller and greater than
the pivot, and recursively sort both groups.

Intuitively, we are hoping that each pivot roughly divides the input in half. If
that were always the case, then we would have a O(nlogn) running time by the usual
divide-and-conquer analysis. However the random pivot may be bad and break the
input into extremely uneven parts, in which case we have made little progress from a
divide-and-conquer point of view.

It appears difficult to analyze the running time when progress varies wildly on
random choices. It gets more convoluted when one thinks about how a good or bad
pivot early effects all the running times thereafter. More generally, one difficulty in
analyzing a randomized algorithm is that sequences of random decisions generate
overwhelmingly many “butterfly effects” to consider.

Fortunately we are not trying to map out all the probabilistic outcomes with
complete precision. We are only interested in analyzing the running time on average.
We will leverage linearity of expectation to greatly simplify the analysis for the
following theorem.

Theorem 1.5. Given a list of n comparable elements, quick-sort returns elements
in a sorted list in O(nlogn) expected time.

Proof. For each i,j € [n] with ¢ < j, let X;; be equal to 1 if the rank i element
(i.e., the ith smallest element) is compared to the rank j element, and 0 otherwise.
> i<; Xij represents the total number of comparisons made by the algorithm, hence
the running time up to a constant factor. We want to upper-bound E[Zi<j Xz'j:|.

Consider X;; for fixed i < j. Observe that the rank ¢ and rank j numbers are
compared to each other iff either is selected as the pivot before any element of rank
between ¢ and j. Since the pivots are selected uniformly at random, this occurs with
probability 2/(j — i+ 1). That is,

2

BIXy] =PIy =1] =~

Consider now the sum >>,_; X;;. While each X;; was simple to analyze alone, the
different X;;’s are not at all independent. Fortunately we do not need to map out
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their myriad interactions; we are only interested in the X;;’s in the aggregate and on
average. Enter linearity of expectation. We have

n
i=1

. n n ) n—i 9

ZZXU ()ZZE wézz 1= ZESO(nlogn),
i=1j=i+1 =1 j=1+1 =1 j=i 1J_Z+ k=1

as desired. Here (a) applies linearity of expectation: the average sum is equal to the
sum of averages. (b) is from our analysis for a single X;; above. O

Bounding the running time with high probability. We’ve now shown that
quick-sort terminates in O(nlogn) time on average. Next we will show that the
running time is at most O(nlogn) with high probability. Here, “high probability”
means that the probability of error is at most 1/n¢ for some fixed constant ¢ > 0; that
is, polynomially small in the input size. (Below we will prove a probability of error
of 1/n?, but the exponent could have been made arbitrarily large by increasing the
hidden constant in the O(nlogn) running time.)

Theorem 1.6. quick-sort runs in O(nlogn) time with high probability.

Proof. Fix an element e. This element e will appear in a series of recursive subproblems
until e is selected as a pivot. Let the depth of e, denoted D,, be the number of recursive
subproblems containing e before reaching the base case. Observe that the sum of
depths over all the elements, ", D., bounds the number of comparisons made by the
algorithm.

Fix e. We will show that with high probability, D, is at most O(logn). More
precisely, we will prove that

P[D. > 32Inn] < 1/n*. (1.1)

Assuming (1.1) holds for any e, we then have

a 1
P \max D, > 321nn} (_<) ZP[De >32Ilnn] <n- — ==
e . n n
by (a) the union bound. This establishes that with high probability, all elements have
depth O(logn). In this event the running time is O(>. D.) = O(nlogn), as desired.
It remains to prove (1.1) for a fixed element e. For i =0,1,2,..., let X; be the
number of elements in the subproblem containing e after ¢ recursive calls. Here Xy =n

since initially there are n elements. For depths i after e is selected as a pivot we set
X; =0. Thus D, > i only if X; > 1.
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We want to upper bound E[X;] for each i (and eventually show that E[X;] =
1/ poly(n) for i = O(logn)). As mentioned above, Xy, = n. Consider X;. An exact
estimate for E[X}] is somewhat involved as it depends on the rank of e. A lazier
upper bound can be obtained as follows.

For a given subproblem of k elements, call a pivot “good” if it is one of the middle
k/2 elements, and otherwise “bad”. A pivot is good with probability 1/2, and separates
e from at least k/4 elements. Applying this logic to the first pivot, where &k = X, = n,
we have

E[X)] =

More generally, for each index ¢, conditional on X;_1, we have
1 3 1 7
EX, | X, <=---X, 1+ =-X,.1=-X,_1.
[z|zl]_2421+211 811
We now claim, by induction on 4, that E[X;] < (7/8)'n. The base case i = 0 is
immediate. For ¢ > 0, we have

7 7\’
EX;|% E [E[Xi|Xi_1]} = E [XH} © <> n.
Xi Xi,1 X»; Xi—l 8 8

Here, in (b), we applied the law of iterated expectations. (c) is by our induction
hypothesis.
Now, let k = 32Inn. We have

N @ 1
EX;|<(l—=]n % e = ety = —
8 n3

Here, in (d), we applied the inequality 1+ 2 < e* which holds for all z. Finally, by
Markov’s inequality, we have

P[D, > k] < P[X; > 1] <E[X;] < 1/n°,

as claimed in Eq. (1.1). This completes the proof. O

1.4 Additional notes and materials

Quicksort is also covered in [MR95, Chapter 1]. This particular proof of the high
probability bound for quick-sort is from [Harl9]. It is implicitly similar to a more
standard proof using concentration inequalities, which will be introduced later.

31



1. Randomized searching and sorting Kent Quanrud
1.5. Exercises Fall 2025

Lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2025 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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o Handwritten notes annotated during the presentation.
¢ Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2023 lecture materials. Click on the links below for the following files:
o Handwritten .pdf prepared before the lecture (and .note file).
o Handwritten .pdf annotated during the presentation (and .note file).
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2022 lecture materials. We covered the randomized algorithm for 3-SAT
(and not derandomization) and quick-select (expected running time only), as well
as a randomized algorithm for minimum cut which will be discussed later. Click on
the links below for the following files:

e Handwritten notes prepared before the lecture.

o Handwritten notes annotated during the presentation.

e Recorded video lecture.

1.5 Exercises

Additional exercises may be found it [MR95, Chapter 1].

Exercise 1.1. This exercise is about how for many intents and purposes, we approxi-
mately have the extremely convenient identity, “1 4+ x =~ e*”.
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https://fas22.s3.amazonaws.com/FAS22.21+-+Random+sampling+searching+and+sorting.pdf
https://fas22.s3.amazonaws.com/FAS22.21p+-+Random+sampling+searching+and+sorting.pdf
https://youtu.be/W46Pky2AxKc
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1. Prove that for all z € R, 1 + 2 < e”.

Hint: At x = 0, both sides are equal. What are their respective rates of change
moving away from 0?

2. Prove that for all x <1, e* <1+ 2 + 2.

Exercise 1.2. Recall the quick-select algorithm introduced in Section 1.1.3. The
goal of this exercise is to prove that quick-select takes O(n) time in expectation.
Below we present two different approaches which offer two different perspectives.
Both analyses should use linearity of expectation and we ask you to point this out
explicitly.
1. Approach 1. Analyze quick-select similarly to quick-sort, based on the sum
of indicators Xj;.
One approach is to reduce to a separate analysis for each of the following 4
classes of pairs:
(a) X;; where ¢ < j <k,
(b) Xij where 1 < k < 7,
()
(d) X;; where either i =k or j = k.

Xi; where k < i < j, and

For each case, show that the expected sum is O(n).

2. Approach 2. The following approach can be interpreted as a randomized divide
and conquer argument. We are arguing that with constant probability, we
decrease the input by a constant factor, from which the fast (expected) running
time follows.

(a) Consider again quick-select. Consider a single iteration where we pick a
pivot uniformly at random and throw out some elements. Prove that with
some constant probability p, we either sample the kth element or throw
out at least 1/4 of the remaining elements.

(b) For each integer i, prove that the expected number of iterations (i.e.,
rounds of choosing a pivot) of quick-select, where the number of elements
remaining is in the range [(4/3)", (4/3)"1), is O(1).?

3Hint: Exercise C.35.
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(c¢) Fix an integer i, and consider the amount of time spent by quick-select
while the number of elements remaining is greater than (4/3)""! and at
most (4/3)%. Show that that the expected amount of time is < O((4/3)7)

(d) Finally, use the preceding part to show that the expected running time of
quick-select is O(n).

Exercise 1.3. Last week you decided to clean up your toolshed, but you compulsively
made the following silly mistake. Originally you had n matching pairs of nuts and
bolts of different sizes, but you decided to organize the nuts and bolts separately into
a box full of nuts and a box full of bolts, splitting up all the pairs of nuts and bolts in
the process. So now you have n nuts, and n bolts, such that each nut fits a distinct
bolt and vice-versa, but you don’t know which nut goes with Wthh bolt.

The bolts all look pretty similar, so you can’t compare
two bolts directly with each other and tell which one is
bigger. Likewise you cannot compare the nuts to each
other. However, you can try to fit one nut to one bolt,
and see if either:

1. The nut fits the bolt.

2. The nut is too big for the bolt.

3. The nut is too small for the bolt.

We will treat one of these nut-to-bolt tests as a single operation. Your goal is to
match up all nuts and bolts. Of course you can compare every pair of nut and bolt in
O(n?) time, but can you do better?

Design and analyze an algorithm, as fast as possible, to recover all matching pairs
of nuts and bolts.

Exercise 1.4. This exercise is about a simple randomized algorithm for verifying
matrix multiplication. Suppose we have three n x n matrices A, B, C'. We want to
verify if AB = C. Of course one could compute the product AB and compare it
entrywise to C'. But multiplying matrices is slow: the straightforward approach takes
O(n?) time and there are (more theoretical) algorithms with running time roughly
O(n*37+). We want to test if AB = C' in closer to n? time.

The algorithm we analyze is very simple. Select a point z € {0,1}" uniformly
at random. (That is, each x; € {0,1} is an independently sampled bit.) Compute
A(Bz) and Cz, and compare their entries. (Note that it is much faster to compute
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A(Bx) than AB.) If they are unequal, then certainly AB # C' and we output false.
Otherwise we output true. Note that the algorithm is always correct if AB = C, but
could be wrong when AB # C. We will show that if AB # C, the algorithm is correct
with probability at last 1/2.

1. Let y € R™ be a fixed nonzero vector, and let 2z € {0,1}" be drawn uniformly at
def

random. Show that (z,y) = I | z,y; # 0 with probability at least 1/2. *
2. Use the preceding result to show that if AB # C', then with probability at least
1/2, ABx # Cx.°

3. Suppose we want to decrease our probability of error to (say) 1/n?. Based on
the algorithm above, design and analyze a fast randomized algorithm with the
following guarantees.

o If AB = C, then it always reports that AB = C.

o If AB # C, then with probability of error at most 1/n?, it reports that
AB # C.

(Your analysis should include the running time as well.)

Exercise 1.5. Let P be a set of n distinct points in the plane.
Consider the problem of computing the minimum distance
|lp — ¢l| between any two distinct points p,q € P. (If |P| < 1,
the minimum distance is defined as +o00.) For simplicity we
assume the points are in general position, so that all pairwise
distances are unique. You may have learned a deterministic
divide-and-conquer algorithm that runs in O(nlogn) time.
Here we will analyze the running time of a different ran-
domized algorithm. To help build intuition, first solve the
following problem.

1. (3 points) Let ay,...,a, € R be n distinct numbers presented in a uniformly
random order. Imagine tracking the minimum as you examine the numbers one
by one in (the randomized) order. What is the expected number of times the
minimum changes?

4Hint: Suppose for simplicity that the last coordinate of y is nonzero. It might help to imagine
sampling the first n — 1 bits and computing the partial sum S, _1 = Z?;ll xy; first, before sampling
Ty and adding x,yn. Formally your analysis may involve some conditional probabilities. (And what
about the case where y, = 0%)

SEven if you haven’t solved part 1 you may assume it to be true.
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We assume black box access to a data structure for the following “threshold”
version of the minimum distance problem. Fix a threshold p > 0. The data structure
takes O(1) time to initialize, and starts with an empty point set. It supports the
following operation:

insert(z): Insert a point z € R? into the underlying point set. If the
minimum distance in the underlying point set is (strictly) less than p, then

return true; otherwise return false. This operation takes O(1) expected

time.b

This subroutine, combined with part 1, suggests the following algorithm. Here we
assume that one can do math operations (add, subtract, square, etc.) in O(1) time,
and that we can sample a random permutation of n items in O(n) time.

1. Let p1,p2,...,pn permute P uniformly at random. // O(n) time.

2. Let r1 = 400 and 7 = ||p1 — p2||.
/* We maintain the invariant that r; is the minimum distance over py,...,p;. */
3. Start a new instance of the threshold data structure with threshold r5. Insert
p1 and pa.
4. Forv=3,...,n:
A. Insert p; into the threshold data structure. If the data structure returns
true:

1. Let r; = min{||p; — pj|| : j < i}.
2. Replace the threshold data structure with a new one with radius r;.
Insert pi,...,p; into the data structure.

B. Otherwise set r; = r;_1.

5. Return 7,.

Now analyze this algorithm via the following steps.

2. (3 points) For each index i > 2, analyze the exact probability that r; < r;_.

We can implement this data structure by building a “hash table over grid cells”. Initially we
have an empty dictionary for an empty point set. Given a point © = (z1,22), compute the key
key(@) = (|z1/(p/V?2)], |22/(p/v2)| in O(1) time. (Rounding is not a standard operation in all
models of computation, but here we assume it takes O(1) time.) If this key is already occupied
by a point y € P, then ||z — y|| < p, and we return true. Otherwise consider the 8 “neighboring”
keys/cells where we add or subtract at most one or zero to each of the key’s coordinates. Assuming
the minimum distance was > p before inserting x, each of these 8 cells can have at most 1 point. If
the distance between 2 and any of the O(1) points in neighboring cells is < p from z, return true.
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3. (4 points) Finally, bound the expected running time of the algorithm.

Exercise 1.6. You have a sequence of n switches Sq,...,.S, that jointly control m
light bulbs Ly, ..., L,,. Each switch can be “up” or “down”, and this controls whether
the light bulbs are on or off.

Each light bulb L;, is associated with two sets of switches A;, B; C [n]. The
switches in A; turn on the light bulb when they are “up” and the switches in B; turn
on the light bulb then they are “down”.

More precisely, for each j € A;, having switch S; “up” automatically turns on the
light bulb. (It only takes one of these switches to be “up” to turn on the light bulb.)
For each j € Bj, turning the switch “down” automatically turns on the light bulb.
(Again, it only takes one of these switches to be “down” to turn on the light bulb.)

Thus, for a light bulb L;, the light bulb L; lights up if and only if either (a)
some switch in A; is flipped up or (b) some switch in B; is flipped down. A; and
B, are generic subsets of switches, not necessarily disjoint, and their union does not
necessarily include all the switches. We do assume, however, that |A;| + |B;| > 2 for
all 7. We assume that the sets A; and B; are given explicitly for each i (for simplicity;
otherwise they can be obtained by inspection).

Your algorithm can flip switches “up” and “down”. For the sake of running times,
assume that flipping a single switch takes O(1) time, and inspecting whether a single
light bulb is on or off takes O(1) time. The light bulbs turn on and off instantly when
you flip a switch.

For each of the following decision problems, either (a) design and analyze a
polynomial time algorithm (the faster the better), or (b) prove that a polynomial
time algorithm would imply a polynomial time algorithm for SAT.

1. Decide if there exists a way to flip the switches to turn on all the light bulbs.

2. Decide if there exists a way to flip the switches to turn on at least three-fourths
of the light bulbs.

Exercise 1.7. Let G = (V, E) be an undirected graph with m edges and n vertices,
vertex weights w : V' — R, and maximum (unweighted) vertex degree A. We let
W =3 ,cy w(v) denote the total weight of all the vertices.

Recall than an independent set is a set of vertices S C V such that no two vertices
in S are connected by an edge. Computing the maximum cardinality independent set
is NP-Hard. In fact, for all € > 0, it is NP-Hard to get a 1/n'~“-approximation to the
maximum cardinality independent set. (Of course, computing the maximum weight
independent set is no easier.)

Consider the following algorithm that always returns a maximal independent set:
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randomized-greedy(G = (V, E),w)

1.
2.
3.

4.

Order the vertices vy, ..., v, uniformly at random.
S+ 0.

Fori=1,...,n:

A. If S + v; is independent, then set S < S + v;.
Return S.

1. (6 points) Analyze the approximation ratio of randomized-greedy, as a function
of the maximum degree A.

2. (4 points) Derandomize randomized-greedy. That is, design and analyze a
deterministic polynomial-time algorithm that outputs an independent set with
weight at least as good as the expected weight of the independent set returned
by randomized-greedy.

Exercise 1.8. Prove Turan’s theorem:

Turan’s theoremAny undirected graph G with m edges and n vertices
has an independent set of size (at least)

n2

2m+n

(You may want to solve Exercise C.70 first.)
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Chapter 2

Hashing and heavy hitters

2.1 Introduction

Google has an interesting web page called “Google trends”, which tracks surging
search queries around the world in real time. In Spring 2021, there was even a subpage
of search trends specifically related to the Covid-19.

US: Search interest in past week o<

® Hand Sanitizer @ Face mask @ Social distancing Hand Washing

Google tracks the trending search queries not just for the sake of curiosity. Its
goal is not only to serve queries, but to serve queries fast. The best way to serve
something quickly is to have it ready before it is even asked for. By keeping track of
the ‘heavy hitter” search terms - a few search terms that make up a disproportionate
amount of the search traffic - Google can cache the answers to most search requests
before they are even made.

Google currently serves billions® of queries a day. Given the sheer magnitude of
Google’s search traffic, and the diversity of search queries, it is not obvious how to

!Maybe 7 billion? See https://www.internetlivestats.com/google-search-statistics/
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identify the most popular search queries. Certainly one cannot simply have a tally for
each search term, since there are too many search terms out there to be stored. More
generally, it is prohibitively expensive to maintain any data structure proportional to
the input size. Somehow we need an approach that takes sublinear space.

Streaming models. We study the heavy hitter problem in the streaming model of
computation. In the streaming model, the input is a sequence of items presented to
the algorithm one at a time. We assume the algorithm has much less memory than
the size of the input. In particular, it cannot simply write down everything and solve
the problem offline. For example, suppose the stream had m items in the stream, and
the algorithm was allowed only O(y/m) space. When the space is so much smaller
than the input size, each time an item from the stream is given to the algorithm, the
algorithm needs to fairly selective about what parts of the item (if any) it wants to

remember.
OO0O000O @ 0000
|

A‘%ﬁ\‘“\w\ W/
liwvfed space

The heavy hitters problem. We formalize the heavy hitters problem as follows.
We have m elements in a stream ey, ..., e,,, where each element is from some large
universe [n] = {1,...,n}. Elements can repeat. The absolute frequency of an element
e, denoted f., is the number of times the element appears in the stream. The relative
frequency, denoted p,, is the fraction of the stream that the element appears in. In a
stream of m elements, the relative frequency of an element is the absolute frequency
divided by m.

Ideally we would track all of the elements exactly. This is impossible with less than
min{n, m} bits?’. Here, and unlike standard algorithmic settings, upper bounds like
O(m) or O(n) bits are not good enough. So we relax our requirements and formulate
problems that are more tractable but still useful. We first relinquish exactness and
consider approzimations, where we allow for some error that we can analyze and control.
We also give up on deterministic computation, and design randomized algorithms that
have some small — analyzed and controlled — probability of failure.

20ne can formalize this impossibility as follows. There are (m:fl_ 1) ways to make a frequency

vector of n items where the total sum is m. (Why?) Suppose we claim that we can describe any

combination of counts with k bits. Each k-bit string can describe by only one of these (mzf; 1)
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e-heavy hitters. Given a fixed parameter € € (0,1), an e-heavy hitter is an element
with relative frequency > e. The heavy hitters problem is to identify all of the
e-heavy hitters for an input parameter € > 0. Note that there can only be (1/¢)-many
e-heavy hitters, which preserves some hope that we can identify all of them with space
proportional to 1/e, rather than m.

We also consider a closely related problem of (approzimate) frequency estimation.
Given a fixed error parameter € > 0, the goal is to estimate every element’s relative
frequency up to an additive error of €. Equivalently, we want to estimate the absolute
frequency of each element up to an em-additive factor. At first it might seem impossible
to estimate n-many counts with o(n) space. We have already argued that m exact
counters is impossible. Allowing for e-relative error, however, means that 0 is a
satisfactory estimate for all but at most [1/€¢] elements.

If we had a data structure that can estimate the absolute frequency of each
element up to an additive error parameter e, then one can use such a data structure
with (approximately) maintain a list of all the heavy hitters. See exercise 2.3. Of
course frequency estimation gives more information than just who are the heavy
hitters. By knowing their frequencies up to some small error, one can also rank them
(approximately) from most to least frequent, such as in Google trends.

Conversely, if we knew a priori which of the elements are the e-heavy hitters, then
e-frequency estimation is trivial. Namely, we would maintain a counter for each of the
| 1/€]-many e-heavy hitters. All other elements are ignored and assigned frequency 0.
Of course this approach is not possible since we do not know the heavy hitters.

Surprisingly we will pursue a strategy that is actually quite similar. We will
allocate w = O(1/¢€) counters, hoping to use one counter for each heavy hitter (plus a
few extra for safe measure). Although we do not know the heavy hitters, we will use
randomized hash functions to isolate them implicitly.

outcomes, so we must have 2% > (m:fl_ 1), hence k > log ((m:fl_ 1)) Here log denotes log,. We also

have

n+m-—1 n+m—1\""" n+m-—1 n+m-—1 n+m—1\"
= — and also = > —
n—1 n—1 n—1 m m
Thus

-1
k>(n—1)log<1—|—m) andk>mlog(1+n>.
n—1 m

Slightly better low bounds can be obtained via Stirling’s approzimation, which is also related to
entropy.
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2.2 Hashing

Likely the reader has used hash tables before, and may be aware that they use hash
functions to randomly map keys to slots in an array. (We discuss hash tables in detail
in the following chapter.)

Loosely speaking, a hash function is a randomly constructed function h : [n| — [k]
where the values h(i) are (in a qualified sense) randomly distributed through [k]. A
collision is a pair of distinct indices iy # iy € [n] such that h(i;) = h(iz). In most
applications, n is much (much, much) larger than k. In this case, there are necessarily
many collisions (see exercise C.6). A goal of hash functions is to distribute these
collisions “fairly”.

Ideal hash functions. One way to construct a hash function, for example, is to
sample, for each i € [n], a value h(i) € [k] independently and uniformly at random.
This produces an “ideal hash function”, defined as follows.

Definition 2.1. An ideal hash function h : [n| — [k] is a uniformly random function
h : [n] — [k]. That is, each h(i) is drawn from [k] independently and uniformly at
random.

An ideal hash function h is particularly easy to reason about. For example, for
every input ¢ and possible output j € [k], we have

More generally, for any ¢ distinct inputs iy,...,7, € [n] and ¢ possible outputs

Jis -5 Je € [£], we have

P[h(ll) = jl, h(ZQ) = j2’ Tt h(”) = ]Z]

= P[h(i1) = j1] P[h(i2) = jo] - - - P[h(ie) = j]
1

=

Ideal hash functions are a good model to keep in mind when designing randomized
algorithms. Assuming the hash values are completely independent simplifies calcula-
tions. In reality, however, ideal hash functions are very expensive to make and store.
Indeed, one has to have nlog k bits to be able to describe all of the possible functions
from [n] to [k] (as there are k™ such functions, and we must pay the logarithm of
this quantity). This is particularly ill-suited to our streaming setting where n is
astronomical and the goal is to use space sublinear to the input size.
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Universal hash functions. Fortunately, in most applications, only a limited amount
of randomization is actually required. For the current discussion, we only require
“universal” hash functions that have “ideal pairwise collision probabilities”, in the
following sense.

Definition 2.2. A random hash function h : [n] — [k] is universal if for any distinct
indices 1y # iy € [n], we have

Plh(i1) = h(iz)] <

| =

In contrast to ideal hash functions, universals hash functions can be constructed
compactly, as described in the following theorem.

Theorem 2.3. Consider the randomly constructed function h : [n] — [k]

h(z) = (ax +b mod p) mod k,

where p is a prime number larger than n, a € {1,...,p — 1} is drawn uniformly at
random, and b € {0, ...,p} is drawn uniformly at random. Then h is a universal hash
function.

The proof of Theorem 2.3 is given as exercise 2.2. Here we will assume Theorem 2.3
and focus on its application to the heavy hitters problem.

2.3 Using hashing to approximate frequencies

Let us now return to the frequency estimation problem. We have elements from the
set [n] arriving in a stream. We assume we know n a priori but not the length of
the stream, which might as well be infinite. In the analysis, we imagine pausing
the stream at a fixed point in time after m elements have arrived, and analyze the
algorithm at that point in time.

The goal is to estimate the absolute frequency of each element up to an (em)-
additive factor. The crux of the problem is that total space usage should be (more or
less) independent of the length of the stream, m, or the number of elements, n. We
mentioned briefly above that if we knew the heavy hitters, then we could just maintain
a counter for each one. Since there are at most 1/¢ heavy hitters, this approach would
satisfy our space constraints. Of course we do not know the heavy hitters. In the
following, we will use hash functions to, in effect, guess the heavy hitters.

43



2. Hashing and heavy hitters Kent Quanrud
2.3. Using hashing to approximate frequencies Fall 2025

hashed-counters(e > 0)

1. Allocate an array of size A[l..w] for w = [2/€]
2. Sample a universal hash function h: {1,...,n} = {1,...,w}
3. For each item e in the stream

A. Alh(e)] + Alh(e)] + 1

Figure 2.1: Hashing into a O(1/¢€) counters.

We first create an array of coun-
ters A[l..w] with w = [2/e]| entries.
Note that 2/e is extremely small
compared to the total length of the
stream, or the distinct number of keys.
We also sample a universal hash func-
tion h: {1,...,n} = {1,...,w}. For
each element e presented by the stream, we increase A[h(e)] by 1. In turn, for each
element e, we treat A[h(e)] as an estimate for f.. See Fig. 2.1 for pseudocode.

Alh(e)] never underestimates f., and the hope is that it does not overestimate
fe by too much. The risk of error comes from other elements’ frequencies possibly
adding more than em to A[h(e)]. Here the intuition is that the “noise” coming from
other frequencies is spread out by the hash function over 2/e entries, so we would only
expect em/2 error for each element e. To translate “expected error” to “probability
of error”, we use Markov’s inequality, as follows.

A w= 0%

Lemma 2.4. For each element e, with probability > 1/2, we have
f. < AB(O)] < £, +em.

Proof. We have A[h(e)] > f. always because A[h(e)] is a sum of frequencies of
elements with hash code h(e), which of course includes e. The expected additive error
is bounded above by

E[Ah(e)]] ~ f. 2 3 faPlh(d) = h(e)] < m/fw <
d#e

m. (2.1)

Here (a) is by linearity of expectation. (b) is because h is universal. Now we have

P[Ah(e)] > f. + em] < PIAh(e)] — f. > 2B[A[h(e)] — £.]] <
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count-min(e >0, ¢ > 0)

1. build d = [log 1/§] instances (A, hy),. .., (Aqg, hq) of hashed-counters(e)
over the stream

2. to query an element e:

A. return min;,— 4 A; [hi(e:)]

Figure 2.2: The count-min data structure

Here (c¢) plugs in the inequality obtained in (2.1). (d) applies Markov’s inequality,
where we note that A[h(e)] — f. > 0. O

Given that it is impossible to track frequencies exactly in sublinear space, it is
suprising that we can now count every element’s frequency with extremely small space,
sometimes and with small additive error. The algorithm, including the construction
of the universal hash function, is extremely simple.

2.4 Amplification

Section 2.3 shows how to estimate each element with fairly small error with constant
probability of error. Our goal now is to reduce the error probability enough to even
take the union bound over all of the elements, and thus estimate all frequencies up to
em-additive error.

The idea is to use repetition, and one analogy is coin tossing. The goal is to flip
enough coin tosses to get at least one heads with very high probability. With one coin
toss, the probability that it is tails is 1/2 = .5. With two coin tosses, the probability
that both come up tails is still 1/4 = .25. But with 100 coin tosses, the probability that
all 100 coin tosses come up tails is 1/21%° 2~ .0000000000000000000000000000007886....

The point is that independent trials magnify the probability Ay b,
of success exponentially. For a specified probability of error

A, W
d € (0,1), the algorithm count-min below makes [log 1/4d] in- Az \‘1
dependent instances of hashed-counters(e). For each element s
e, it uses the minimum estimate over all of the instances of Aa by

hashed-counters. The overall data structure fails for an ele-
ment e only if every instance of hashed-counters fails, which Ay \wy
by the analogy with coins, is exceedingly unlikely.
We now have the following smaller error probability for each element e.
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Lemma 2.5. For each element e, with probability > 1 — &, we have

‘min A;[h;(e)] < fo+ em.

i=1,...,d

Proof. We have

d
in Alh, @ h, 1
P ii11171'{17dA1[h1(e)] > fo+ em} = izl—IlP[AZ[hZ(e)] > fe+em] < 5 < 0.
Here (a) is by independence of each A;[h;(e)]. (b) is by Lemma 2.4. O

For § set to a polynomial of 1/n, the probability of error becomes low enough to
take a union bound over all elements in [n], as follows.

Theorem 2.6. Given a stream of elements from the range [n|, count-min(e, 1/n?)
has the following guarantee at any fixed point in the stream.

Suppose m elements have been presented in the stream. With probability at least
1 —1/n, count-min(e,1/n*) overestimates the total frequency of each element with
additive error at most em and total space O(log(n)/e).

Proof. By Lemma 2.5, we have probability of error < 1/n? for each element e. Taking
the union bound over all n elements in the stream, we have probability of error
<1/n. O

Remark 2.7. More precisely, the space usage of count-min(e,1/n?) is that of

O(log(n)/e€) counters. Here we assume each counter takes O(1) space for simplicity.

2.5 Extensions

2.5.1 Crossing streams

One can extend the streaming model to multiple streams in the following distributed
model of computation. Here we have several streams simultaneously, each served by
an algorithm using sublinear space. The goal is to solve the heavy hitters problem
over the combined streams.
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count-min has the convenient property of being a sketch. To handle multiple
streams, we have an instance of count-min for each stream arranged so that they are
all using the same hash functions. To combine their results, we simply sum up the
arrays A; of hashed sums entry-wise. The result is an instance of count-min over the
combined streams.

2.5.2 Turnstile streams

Consider the more general model where each item in the stream consists of an element
e and a value A, signifying that we should increase the frequency count for e, f. by A.
A is allowed to be negative, with the restriction that the frequency f, of each element
(which is now the sum of A’s for that element) remains nonnegative. This model
is sometimes called a “turnstile stream”, in the sense that a turnstile counting the
number of people in an amusement park is always nonnegative because each decrease
corresponds to a person who entered the park earlier.

count-min adapts immediately to turnstile stream, by simply adding A to A;[h;(e)]
for each instance (A;, h;) of hashed-counters. The additive error is now e times the
sum of all A’s in the stream.

2.6 Takeaways

e There are many basic and useful problems — heavy hitters with sublinear
space being on of our first examples — that are too difficult or even impossible
to compute exactly and deterministically. Instead we consider randomized
approximation algorithms that are potentially more scalable. This requires
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2.7

quantitative analysis to address the approximation factor in addition to algorithm
design.

count-min-sketch uses hashing to try to distribute the heavy hitters across an
array. It does not know which are the heavy hitters, but relies on randomization
to separate the heavy hitters (most of the time) in an oblivious fashion.

Ideal hash functions, while easy to reason about, are prohibitively expense.
Luckily, weaker hash functions with limited randomness often suffice, and are
easily constructed. count-min-sketch requires only universal hash functions.
Universal hash functions can be implemented very easily.

Linearity of expectation, combined with universal hash functions, implies that
the noise seen by a particular element is evenly spread out on average. Markov’s
inequality allowed us to argue that the noise encountered by an element is close
to the average, most of the time.

count-min amplifies the probability of success by taking the minimum over
many independent trials. A particular element is miscounted if and only if
all independently trials miscount the element, which happens with vanishingly
small probability.

The error probability drops so rapidly that we can apply the union bound over
all of the elements after just O(logn) trials.

count-min does not give unbiased estimates of the counters. Instead, count-min
tries to be within a prescribed error with high probability. It is consistent. It is
more important to be consistent then unbiased, since we can (psychologically)
adjust for the bias. Many real-world apparatus are designed on this principle.

Additional notes and references

The count-min data structure is from [CMO05]. Additional notes can be found in
[Nel20; Cheld].

Lecture materials. Click on the links below for the following files:
o Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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Spring 2025 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2023 lecture materials. Click on the links below for the following files:
o Handwritten .pdf prepared before the lecture (and .note file).
o Handwritten .pdf annotated during the presentation (and .note file).
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

2.8 Exercises

Exercise 2.1. Let h : [n] — [k] be any fixed function.

1. Prove that the number of collisions is

- n(n —k)
- 2k

2. Show that the above inequality is tight when k divides n.
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https://ras24.s3.amazonaws.com/RAS24.02+-+Hashing+and+heavy+hitters.pdf
https://ras24.s3.amazonaws.com/RAS24.02p+-+Hashing+and+heavy+hitters.pdf
https://youtu.be/GxKt4iccM6E
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https://raf22.s3.amazonaws.com/RAF22.02p+-+Hashing+and+heavy+hitters.pdf
https://youtu.be/GtFSaCGin5M
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https://youtu.be/ge9_rTyR32s
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Exercise 2.2. Show that the construction given in Section 2.2 is indeed a universal
hash function, using the steps listed below.

To recall the construction, we randomly construct a function h : [n] — [k] as
follows. First, let p be any prime number > n. Draw a € {1,...,p — 1} uniformly at
random, and draw b € {0,...,p — 1} uniformly at random. We define a function h(z)
by

h(z) = ((ax +b) mod p) mod k.

1. Let x1, 29 € [n] with z1 # 5, and let ¢1,co € {0,...,p — 1} with ¢; # ¢5. Show
that the system of equations
ary +b=c¢ modp

axrs +b=co mod p
uniquely determines a € {1,...,p—1}and b€ {0,...,p—1}.°

e Step 1 implies that the map (a,b) +— (ax; + b mod p,axy +
b mod p) is a bijection between {1,...,p—1} x {0,...,p—1} and
{(c1,¢2) €{0,...,p—1} 1 ¢1 # ca}.

2. Let x1,z9 € [n] with z1 # 25, and let ¢y, € {0,...,p — 1} with ¢; # co. Show
that

I

plp—1)

(Here the randomness is over the uniformly random choices of a and b.)

Plazy +b=¢; mod p, axs +b=cy mod p] =

3. Fix @1, 29 € [n] with ¥y # x5, and ¢; € {0,...,p — 1}. Show that

Z Plaxi +b=¢; mod p, axs +b=cy mod p| <

626{17""1)}
ca#c1 mod p
c1=co mod k

1
pk’

e The LHS represents Plax; + b = ¢; mod p and h(zy) = h(z1)].*

3Here it is helpful to know that division is well-defined on the set of integers modullo p when p is
prime. More precisely, “a/b” is defined as the unique integer ¢ such that bc = a.

4Here we note that for z, # 2, azrq +b = axs + by mod p iff a = 0.

5[117int: You may want to show that the number of values ¢s € [p] such that ¢; = ¢ mod k is
< =,
- n
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4. Finally, show that P[h(z1) = h(xs)] <

x| =

Exercise 2.3. The count-min data structure allows us to estimate the relative
frequency of each element up to an e-additive factor with probability of error <
1/ poly(n) with O(log(n)/¢) space. © The original motivation, however, was to also
obtain a list of e-heavy hitters. Design and analyze an algorithm that maintains a list
of elements, with at any particular point in time,” with probability of error < 1/n?:

1. Contains all of the e-heavy hitters.
2. Only includes (¢/2)-heavy hitters.

Your space usage should be comparable to the space used by the count-min data
structure.®

Additional remark. The question asks for one data structure that satisfies both
the criteria simultaneously. That is, you should maintain a list S that (a) contains
all e-heavy hitters, and (b) only includes (¢/2)-heavy hitters. The tricky part is that
count-min only approximates the frequencies. You may want to account for the fact
that an instance of count-min(e,d) may overestimate the relative frequency of an
element by as much as e, which can make a very infrequent element look like an
e-heavy hitter.

Exercise 2.4. In this exercise, we develop a refined analysis that can reduce the addi-
tive error substantially in (arguably realistic) settings when the stream is dominated
by heavy hitters.

Let S denote the sum of frequency counts of all elements that are not e-heavy
hitters:

S=Y 1.

e:pe<e

Note that S < m, and S might be much less than m when the stream is dominated
by heavy hitters.

SHere the elements are integers from [n] = {1,...,n}, where n is known, and € € (0, 1) is an input
parameter.

"To clarify, what we mean by “particular point in time” is as follows. You have a data structure
that is processing data over time. Suppose we suddenly paused the stream and asked you to report
your list of heavy hitters. Your algorithm should succeed then and there with probability of error
< 1/n?. For this criteria, you do not need to know the length of the stream.

8You may want to use the count-min(e,d) data structure as a black box, but you should be clear
about your choice of parameters € and §.
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Show that, by increasing the parameter w (in the count-min data structure) by
a constant factor, and still using universal hash functions, one can estimate the

frequency of every element with additive error at most €S with high probability in
O(log(n)/e) space.”

Exercise 2.5. Consider the streaming model where we have elements eq,es, ...
presented one at a time by a stream. A natural task is to sample a fixed number of
elements uniformly at random from the stream. Usually, sampling (say) 1 item from
a set of m elements is easy: randomly generate a number k£ between 1 and m, and
return the kth element form your set. Sampling in streaming is trickier because we
cannot hold the entire stream in memory, and don’t know the length of the stream.

1. Consider the following randomized streaming algorithm that selects one element
s from the stream:
sample-one

/* m counts the number of elements in the stream so far, and s is
the “sample” of 1 element from the stream. */

1. m<+0, s+ nil.
2. For each element e presented by the stream:

A, m<«—m+1.
B. With probability 1/m:
1. s<e.

For i € N, let e; denote the ¢th element in the stream. For m € N let s,, denote
the value of s after the mth iteration. Show that for all i and m,

0 if m <1
Pls,, = ¢e;] = 1 " Z
1/m it m>i.
That is, for each m, s, is a uniformly random element out of {ey,..., e, }."°

2. Now let £ € N be a fixed parameter. (e.g., K = 3.) Suppose you want to sample
a set of k elements from the stream without replacement. Design and analyze
an algorithm generalizing sample-one that maintains a sample S of k elements

9Hint: Tt might be helpful to think about the special case of S = 0.
OFix 4. For m < i the probability 0 since e; hasn’t event appeared in the stream. Now, what
about m =47 What about m =i+ 17

92



2. Hashing and heavy hitters Kent Quanrud
2.8. Fxercises Fall 2025

drawn uniformly at random from the stream. That is, for m > k, your algorithm
should have a set S of k elements, where any particular set of k£ elements is
equally likely (i.e., with probability 1/ (7]?)) For k = 1, your algorithm should

coincide with sample-one above.'!

Exercise 2.6. This exercise gives a different and interesting application of hashing
to string matching. In string matching, we have a long text string T'[1..n], and a
smaller search string S[1..k], and we want to decide if S occurs in 7. For simplicity
we assume these are bit strings, but it is easy to generalize to larger alphabets.

The naive approach directly compares S[1..k] to each length-k substring T[i, ..., 7 +
k — 1], and takes O(nk) time. A more sophisticated algorithm due to Knuth, Morris,
and Pratt compiles S into a deterministice finite automaton Ag of size O(k), and uses
the automaton Ag to search 7" in O(n) time. Here we take a different approach based
on randomization.

Now, a k-bit string € {0, 1}* can be thought of as an integer

Pl + 28 2 4+ 20 + T

between 0 and 2¥ —1. One might try to compute all the integers for the k-bit substrings
Tk, T[2,,k+1],....T[n — k+ 1..n] of T" and compare each to the integer form of
S. But this is really no different than the naive approach of direct comparison, since
the integers are k-bits long.

Suppose instead we took these integers modulo a prime p drawn from a range
{2,...,q}, for sufficiently large q. Consider the hash function A : {0, 1}k — Z>g
defined by

h(x1.x) = okl + 25 200 4o 4 2041 + 2, mod P

for a randomly selected prime number p. h is a rolling hash function: as we “shift”
the hash function by 1-bit from (say) bits 1, ...,k to bits 2, ...,k + 1, we need only
update

Mo k1) = 2(h(xy ) — 2k_1x1) + 2py1 mod p

1 One way to frame your analysis is as follows. For m > k, let S, denote the (randomized) sample
S after m iterations. Prove the following statement by induction on m — k:

For all m >k, and all sets X C {e1,...,em} of k elements,

P[Sy = X] = —.

(%)

In our argument, you may have two cases depending on whether or not e,, € X.
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with a constant number of arithmetic operations, instead of O(k) operations to
compute it from scratch.

The goal is to use the rolling hash function to design and analyze a fast randomized
algorithm for string matching. The problem of course is collisions between distinct
substrings, and the probability of collision depends on the random selection of p. The
following facts about prime numbers may be helpful:

By the prime factorization theorem, every integer can be represented uniquely
as a product of prime numbers.

By the prime number theorem, there are (1 —o(1))n/Inn primes between 1 and
n.

There is a deterministic polynomial time algorithm for verifying if a number is
prime, and a faster randomized algorithm that succeeds with high probability.
In particular, there is a deterministic algorithm that runs in O(k%) time for k-bit
integers.

. Let z,y € {0, 1}k be two distinct k-bit strings interpreted as integers between 0

and 2F — 1. Observe that =y mod p iff p divides |z — y|, which is again an
integer between 0 and 2% — 1. Prove that there are at most log,(|x — y|) distinct
prime numbers dividing |z — y|.

Suppose p is a random prime number from the range {2, ..., ¢} for some value
q. How large does ¢ need to be to guarantee that p does not divide |x — y| with
probability (say) at least 1/27

Using the observations from the previous 2 problems, design and analyze a
randomized algorithm searching for S in 7" that runs in O(n poly(log k)) time
(the faster the better). (Your algorithm should always be correct, and take
O(npoly(log k)) time in expectation. You can assume that arithmetic operations
modulo p takes O(log p) time.)"™

12 Hint: You might first try to get a O(n log nlogo(l) k:> time algorithm that succeeds with high

probability. (This will still get most of the points.) Getting it down to O (n logo(l) k) time is a little
trickier.
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Chapter 3

Hash tables and linear probing

3.1 Dictionaries

It is difficult to imagine programming without dictionaries and maps, which are data
structures with the following two operations.

1. set(k,v): Associate the value v with the key k.
2. get(k): Return the value associated with the key k (if any).

These two operations form a dead-simple way to store data that can be used in
almost any situation. Inevitably all large software systems, however well-planned and
structured and object-oriented initially, end up using and passing around dictionaries
to organize most of their data. The embrace of dictionaries is taken to another level
in Python and Javascript. These languages provide dictionaries as a primitive, and
supply a convenient syntax to make them very easy to use. In fact the class object
systems in both of these languages are really just dictionaries initialized by some
default keys and values and tagged with some metadata. Screenshots of the online
documentation for the Map interface in Java and for dict (short for dictionary) in
Python are given in Fig. 3.1.

We first point out a special case of the dictionary problem that would be ideal.
Suppose that there are n keys, and that they are all integers between 1 and n. Then
one can simply allocate an array A[l..n] of size n, to hold the n values. Recall that an
array consists of n contiguous slots in memory, and the ith slot, A[é], can be retrieved
or rewritten in constant time. There is also a real benefit to the fact that the array
physically occupies contiguous spots on the hardware. This physical arrangement
implies an extremely compact data structure with fewer cache misses.!

While the array is ideal for its particular use case, it is not very flexible either.
Adding a new key k = n + 1, for example, would require rebuilding a new array of

ISometimes, constant factors matter.
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Java Map Interface

compact1, compact2, compact3
java.util

Interface Map<K,V>

Type Parameters:
K - the type of keys maintained by this map
V - the type of mapped values

All Known Subinterfaces:

Bindings, ConcurrentMap<K,V>, ConcurrentNavigableMap<K,V>, LogicalMessageContext, MessageContext,
NavigableMap<K,V>, SOAPMessageContext, SortedMap<K,V>

All Known Implementing Classes

AbstractMap, Attributes, AuthProvider, ConcurrentHashMap, ConcurrentSkipListMap, EnumMap, HashMap, Hashtable,
IdentityHashMap, LinkedHashMap, PrinterStateReasons, Properties, Provider, RenderingHints, SimpleBindings,
TabularDataSupport, TreeMap, UIDefaults, WeakHashiap

public interface Map<K,V>

An object that maps keys to values. A map cannot contain duplicate kes

ch key can map to at most one value,

‘This interface takes the place of the Dictionary class, which was a totally abstract class rather than an interface.

‘The Map interface provides three collection views, which allow a map's contents to be viewed as a set of keys, collection of values, or
set of key-value mappings. The order of a map is defined as the order in which the iterators on the map's collection views return
their elements. Some map implementations, like the TreeMap class, make specific guarantees as to their order; others, like the
HashMap class, do not.

Note: great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an
object is changed in a manner that affects equals comparisons while the object is a key in the map. A special case of this prohibition
is that it is not permissible for a map to contain itself as a key. While it is permissible for a map to contain itself as a value, extreme
caution is advised: the equals and hashCode methods are no longer well defined on such a map.

All general-purpose map implementation classes should provide two “standard* constructors: a void (no arguments) constructor

Python Dictionary
5.5. Dictionaries

Another useful data type built into Python is the dictionary (see Mapping Types — dict). Dictionaries
are sometimes found in other languages as “associative memories” or “associative arrays”. Unlike se-
quences, which are indexed by a range of numbers, dictionaries are indexed by keys, which can be
any immutable type; strings and numbers can always be keys. Tuples can be used as keys if they con-
tain only strings, numbers, or tuples; if a tuple contains any mutable object either directly or indirect-
ly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in place using in-
dex assignments, slice assignments, or methods like append() and extend().

It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-
separated list of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is
also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given
the key. It is also possible to delete a key:value pair with del. If you store using a key that is already in
use, the old value associated with that key is forgotten. It is an error to extract a value using a non-
existent key.

Performing 1list(d) on a dictionary returns a list of all the keys used in the dictionary, in insertion or-
der (if you want it sorted, just use sorted(d) instead). To check whether a single key is in the dictio-
nary, use the in keyword.

Here is a small example using a dictionary:

which creates an empty map, and a constructor with a single argument of type Map, which creates a new map with the same key

value mappings as its argument. In effect, the latter constructor allows the user to copy any map, producing an equivalent map of >>> tel = {'jack': 4098, 'sape': 4139}

the desired class. There is no way to enforce this recommendation (as interfaces cannot contain constructors) but all of the general- >>> tel['guido’] = 4127

purpose map implementations in the JDK comply. >>> tel

The *destructive” methods contained in this interface, that is, the methods that modify the map on which they operate, are specified Qlaeiss dEl, “opa’s A, “erid’e ALy

to throw UnsupportedOperationException if this map does not support the operation. If this is the case, these methods may, but are EEE il ket

not required to, throw an UnsupportedOperat ionException if the invocation would have no effect on the map. For example, invoking 4098

the putALL(Map) method on an unmodifiable map may, but is not required to, throw the exception if the map whose mappings are to >>> del tel['sape']

be *superimposed" is empty. >>> tel['irv'] = 4127

>>> tel

{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido',
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido’ in tel

Many methods in Collections Framework interfaces are defined in terms of the equals method. For example, the specification for the True

containsKey (Object key) method says: *returns true if and only if this map contains a mapping for a key k such that (key >>> 'jack' mot in tel

P key. equals (k) )." This specification should not be construed to imply that invoking Map. containsKey with a non-null False

argument key will cause key.equals (k) to be invoked for any key k. Implementations are free to implement optimizations whereby
the equals invocation is avoided, for example, by first comparing the hash codes of the two keys. (The Object . hashCode ()
specification guarantees that two objects with unequal hash codes cannot be equal.) More generally, implementations of the various
Collections Framework interfaces are free to take advantage of the specified behavior of underlying Object methods wherever the
implementor deems it appropriate.

Some map implementations have restrictions on the keys and values they may contain. For example, some implementations prohibit
null keys and values, and some have restrictions on the types of their keys. Attempting to insert an ineligible key or value throws an
unchecked exception, typically Nul lPointerException or ClassCastException. Attempting to query the presence of an ineligible
key or value may throw an exception, or it may simply return false; some implementations will exhibit the former behavior and some
will exhibit the latter. More generally, attempting an operation on an ineligible key or value whose completion would not result in the
insertion of an ineligible element into the map may throw an exception or it may succeed, at the option of the implementation. Such
exceptions are marked as “optional” in the specification for this interface,

tirv']

The dict() constructor builds dictionaries directly from sequences of key-value pairs:

>>> dict([('sape’, 4139), ('guido’, 4127), ('jack', 4098)])

Some map operations which perform recursive traversal of the map may fail with an exception for selfreferential instances where {'sape': 4139, 'guido': 4127, 'jack': 4098}
the map directly or indirectly contains itself. This includes the clone(), equals (), hashCode() and toString() methods.
Implementations may optionally handle the self- I scenario, however most current do not do so. . . . o X
In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value ex-
This interface is a member of the Java Collections Framework. —
pressions:
Since:
1.2 >>> {x: x**2 for x in (2, 4, 6)}
See Also: {2: 4, 4: 16, 6: 36}

HashMap, TreeMap, Hashtable, SortedMap, Collection, Set

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:
Nested Class Summary

>>> dict(sape=4139, guido=4127, jack=4098)

Nested Classes {'sape’: 4139, 'guido’: 4127, 'jack': 4098}

Figure 3.1: The Map interface in Java (left) and the built-in Dictionary data structure in
Python (right).

size n 4+ 1 and copying everything over. It’s more problematic when the keys are not
a neat contiguous sequence from 1 to n. Perhaps the indices arise implicitly in the
bit-string representation of some text, in which case these indices will be spread out
over a huge range of possible keys. One cannot allocate an array so big. One could
alternatively reindex (i.e., rename) the n arbitrary keys into the slots 1,...,n. This
works in static situations where the keys are presented at the beginning and never
change thereafter. But recall that the primary appeal of dictionaries is their flexibility,
and their ability to handle all sorts of different keys, without foresight.

A deterministic way to implement dictionaries is via search trees. If the keys are
comparable (such as numbers, or strings in alphabetical order), then search trees
can organize the data in sorted order in a tree-like data structure. With a well-
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designed search tree, searching for a key has roughly the performance of a binary
search over a sorted array: O(logn) time per get and set. These data structures
are often ingenious. Red-black trees use one-bit markers at each node to detect if a
subtree has become too “tilted” in one way or another, and rebuilds the tilted portion
whenever this occurs. Lazy rebuilding explicitly counts the number of keys in each
subtree, and rebuilds an entire subtree when one child subtree becomes much larger
than the other (a.k.a. “scapegoat trees” [And89; GR93|). The celebrated splay tree
data structure by Sleator and Tarjan [ST85b] readjusts itself with every get and
set operation and achieves O(logn) amortized time (i.e., O(klogn) time for any
sequence of k operations). Another deterministic approach to dictionaries is tries,
which requires the keys to be (fairly short) bit strings, and uses each successive bit
to dictate which direction to go down a binary tree. By compressing long paths in
these trees (such as in Patricia tries [Mor68]), these algorithms can be compact and
efficient. Now, as clever as these data structures are, they suffer some drawbacks
compared to arrays. The O(log n) query time for search trees is a bit higher then the
O(1) time of arrays®. They are more complicated to implement, and require a lot of
pointer chasing, generating cache misses on the CPU.?

We instead consider simpler randomized approaches to the dictionary problem;
namely, hash tables. Hash tables combine the dynamic flexibility of search trees with
the raw efficiency of arrays. The only drawback is that the performance guarantees
are randomized, which requires a little more sophistication in the analysis. But most
people consider the net tradeoff to easily be worth it.

Hash tables are generally based on the following framework. Suppose that there
are n keys ki, ..., k, from the set of integers [U] = {1,...,U}, where U is typically
incredibly large. One allocates an array A[l..m] of size m (typically m = O(n)), and
randomly constructs a hash function h : [U] — [m)].

Ideally, each key-value pair (k;,v;) is stored in
the slot A[h(k;)]. The remaining question is what -~
to do when keys collide, i.e., when h(k') = h(k") N
for two distinct keys &' and k”. There are various
ways, to account for collisions, sometimes simple and sometimes clever, such as the
following.

1. Make ¢ so large that even a single collision is unlikely. Exercise C.6 studies how
large m needs to be (relative to n) for this to occur.

2. For each slot j € [¢] in the hash table, build a linked list of all keys that hash to

2Sometimes, log factors matter.
3This last point can be helped to some extent by cache-oblivious versions.
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slot 5. We study this first in Section 3.2.

3. For each slot j € [(] in the hash table, build a second hash table (this time
following strategy 1) for all keys that hash to slot j. This is the topic of
exercise C.63.

4. Suppose we want to insert a key k. Make two hash keys, hy(k) and hy(k), and
hope that one of these two hash keys is open. More radically, if hy(k) and ho(k)
are occupied by other keys, see if it is possible to move one of these other keys
to its own extra hash key, possibly bumping more keys recursively. This wild
approach is called cuckoo hashing.

5. Suppose we want to insert a key k and A[h(k)] is occupied. Start scanning the
array A[h(k) + 1], A[h(k) + 2],... until we find the first empty slot, and put k
there instead. This approach is called linear probing, and will be the topic of
the second half of our discussion.

These hash tables have the appeal of potentially running in constant time, like
an array. Given a key, the hash code h(k) gives a direct index into an array. If the
key is there, then we are done. While there may be collisions, we can see in each of
the strategies above that A[h(k)] still gets us very “close” to the final location of k.
Maybe we have to traverse a short list, hash into a secondary hash table, or continue
to scan A until we find our key. For each of these algorithms, some probabilistic
analysis is required to understand how much time the “collision-handling” stage will
take.

One final remark about the size of hash tables: above, we acted as if we knew a
priori the number of keys that will be put in the table, and used this to choose the
size of the array A. Sometimes, that is the case, but oftentimes it is not, and again
the point of dictionary data structures is to not have to plan for these things ahead of
time. The easy way to handle an unknown number of keys is by the doubling trick. We
start with 0 keys and a modestly sized array A; say, of size 64. Whenever the number
of keys approaches a constant fraction of the capacity (say, 16), we double the size of
the array (to 128). This means we allocate a new array A’ with double the capacity,
scan the previous array A, and rehash each of the items into A’. A simple amortized
analysis shows that the extra effort spent rebuilding is neglible. We note that there
are some distributed computational settings where one wants to maintain a distributed
dictionary, and where simply rehashing items becomes expensive and impractical. We
refer the reader to a technique called consistent hashing that addresses this challenge
[KLL+97]. Distributed dictionaries are particularly useful for caching on the web.
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Figure 3.2: Hash tables with universal hashing and chaining.

3.2 Hash tables with chaining

We first consider hash tables that use linked lists to handle collisions. These are
maybe the easiest to analyze, and also are most similar in spirit to the count-min
data structure from Chapter 2.

We recall the basic framework. We have n distinct keys kq, ..., k,, from a universe
of integers {1,...,U}. We allocate an array A[l..m] of size m. (Eventually we will
set m = O(n), but for the moment we leave it as a variable to explore the tradeoffs
between smaller and larger m.)

We randomly construct a hash function h : [U] — [m|. Here we analyze the setting
where h is a universal hash function, but later we will also explore stronger notions of
independence. Exercise C.1 explores the setting where A is an ideal hash function.

We hash the n keys into A. At each slot A[i], we build a linked list over all the
keys k; such that h(k;) = i. To find a key k, we go to the linked list stored at A[h(k)],
and scan the linked list looking for key k. A high level diagram of the scheme is given
in Fig. 3.2. Clearly, the running time of each get and set will be proportional to the
length of the list at the hashed array index. Thus most of our analysis will focus on
the lengths of these lists.

We first recall the definition of a universal hash function.

Definition 3.1. A randomly constructed function h : [n] — [m] is universal if, for
any two indices 11 # 19, we have

Plh(iy) = h(ia)] = —.

m

We also remind the reader that a universal hash function can be constructed as
a random function of the form A(z) = (ax + b mod p) mod m, where p is a prime
number larger than the maximum possible key.
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Now we present the expected running time of a hash table with chaining and
universal hash functions, as a function of m and n. We encourage the reader to
attempt the proof themselves.

Theorem 3.2. Consider chaining with n keys, an array A[l,...,m], and a universal
hash function h : [U] — [m]|. Then each get and set takes O(1+ n/m) time in
expectation. In particular, for m = O(n), hash tables with chaining takes O(n) total
space and O(1) time per operation in expectation.

Proof. The time to insert a key k is proportional to the number of collisions with &
(plus O(1)). The expected number of collisions

BIW : A(K) = h(k)] 2 Y Pl(K) = h(k) 2 3 L @ 21

K/ #k kik T m

Here (a) is by linearity of expectation. (b) is by universality. (c) is because there are
n — 1 other keys. O]

3.3 Linear probing

In this section, we explore a different strategy for handling collisions that is arguably
more natural: if a key finds its hashed slot already occupied, find the next empty slot
in the array and put it there instead.

The hash table, like before, consists of an array A[l,...,m| and a hash function
h:{1,...,U} = {1,...,m}. To insert an item x, we first try to place x at A[h(z)].
If Alh(x)] is already occupied, then we instead find the next unoccupied index in the
array and place = there instead. (If we reach the end of the array A, then we wrap
around to A[l] and continue.)

4 [H ZAll

Since an item x is not necessarily stored at its hashed cell A[h(x)], we carefully
use the following terminology. We say that an item hashes to a cell Af7] if h(z) = 1.
We say that item = occupies a cell Afi] if A[i] = x. We stress that an item x hashing
into a cell A[i] does not imply that x occupies Ali], and that an item x occupying a
cell A[i] does not imply that = hashes to Ali].

Given two indices a, b € [m], we define the interval from a to b, denoted [a, b], to be
the set of indices {a,a +1,...,b mod m}. The “mod m” means that if b < a, then
we wrap around: [a,b] = {a,a+1,...,m,1,...,b}. One might imagine the array A
arranged in a circle rather than a line.
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Lemma 3.3. If an item = occupies cell { € [m], then all of the cells in the interval
[h(z), €] are occupied.

Proof. The invariant holds initially with an empty array. We maintain the invariant
in the lemma with each insertion, as we insert x in the next unoccupied cell starting
from h(z). O

Lemma 3.3 justifies the following lookup procedure. To look up an item z, we first
check entry A[h(x)]. If item x is not there and the slot is empty, then we conclude
the item is not in the array. If the slot A[h(x)] is occupied, but occupied by some
item other than z, then we start scanning the array cells to the right of A[h(z)] for
either item z or any empty cell. If we find an empty slot before finding x, then by
Lemma 3.3, it must be that z is not in the hash table.

To delete an item z, we first find it by the same process as when looking up:
starting from A[h(x)], we start scanning the cells until we find 2. When we find z at
some cell 7, we delete x from the cell, but then to restore the invariant in Lemma 3.3,
we look for another item to try to fill it. In particular, we start scanning the cells
for the first item z; with h(x;) <4, or else an empty cell. If we find such an item x;
in a cell 77, then we put it in the cell i where x was deleted from. We then continue
scanning for an item to replace 71, and so forth.

This hashing scheme is called linear probing, and has a special place in the history
of computer science. It was analyzed by Donald Knuth in 1962 [Knu63]. Knuth
has been called the “father of the analysis of algorithms”, and he is credited with
formalizing the subject and popularizing O-notation.” As Knuth this was the first
algorithm he ever formally analyzed®. He showed that for ideal hash functions, the
expected time of any operation is O((1/(1 — p))?) for p = n/m; in particular, a
constant, whenever m exceeds n by a constant factor. This data structure also works
very well in practice, even if hash functions in practice are not truly independent.
Part of that is owed to the simplicity of the data structure. Scanning an array is
extremely fast on hardware, and much faster than chasing pointers along a linked list.

4He also invented TeX, solved many problems in compiler design, invented many other important
algorithms, wrote The Art of Computer Programming, and much more... see for example his wikipedia
page.

5See for example this interview: https://www.youtube.com/watch?v=Wp7GAKLSGNI.
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Post-Knuth, there remained a question of how much independence was required to
get a constant running time in expectation. We say that a hash function h : [U] — [m]
is k-wise independent for k € N if for any k distinct keys x4, ...,z € [U], and any k
values vy, ..., v, € [m], we have

P[h(z1) = v1 A h(zg) =va A+ A h(xy) = vg] = L

mk
That is, the hash values of any fixed set of k (or fewer) keys behaves as if they were
produced by an ideal hash function.

(Construct a k-wise independence is more subtle than constructing a universal
hash function (like in exercise 2.2), but ultimately can be sampled efficiently in
O(k poly(log(n),log(m))) time and represented in O(k(log(n) + log(m))) bits. See
[Vad12, Chapter 3].)

For what values of k£ does linear probing, with k-wise independent hash function
and m = O(n), run in O(1) expected time? Around 1990, Schmidt and Siegel [SS89;
SS90] showed that O(log n)-wise independence sufficed®. Then, in 2007, Pagh, Pagh,
and Ruzic [PPR09] showed that (just!) 5-wise independence sufficed. This was
dramatic progress for arguably the oldest problem in algorithm design. Soon after,
[PT16] showed that 4-wise independence was not enough. So the answer is 5!

Here we give a simplified analysis of the result of [PPR09] based on ideas in [PT16].
We don’t put too much emphasis on the constants, preferring to keep the main ideas
as clear as possible. Much better constants can be found in [PPR09] and also the
reader is encouraged to refine the analysis themselves. Similar proofs of the constant
time bound can be found in [Thol5b; Nell6].

3.3.1 Warmup: Ideal hash functions

Consider linear probing with ideal hash functions, assuming m > 2en.

Suppose we search (or insert or delete) an item z. Each operation on an item x
takes time proportional to the number of consecutive occupied cells starting from
A[h(x)]. To help analyze this length, we introduce the notion of “runs”.

RLOLAREEZEZEZEZLEZ

A run is defined as a maximal interval of occupied slots. Every occupied cell is
contained in a unique run. If an item z is in the hash table, then A[h(z)] is occupied,

6Alan Siegel taught me algorithms.
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and z occupies a cell in the run containing A[h(z)]. Therefore each operation with an
item x takes time bounded by the length of the run containing x. The key question
is: what is the expected size of the run at h(z)?

Let R represent the (randomized) run containing h(x) and let | R| denote its length.
We have

E[|R]] = Z“’IR\—Q

(=1

running time
(up to constants)

Fix a particular length ¢ and consider the probability that R has length ¢. There
are { possible intervals at h(z), sliding from the interval [h(x) + 1 — ¢, h(x)] ending at
h(x) to the interval [h(z), h(x) + ¢ — 1] starting from h(x).

Let I be one of these intervals containing h(x). We have R = I only if exactly ¢
of the n elements are hashed into the ¢ slots in I. (Why?) The latter occurs with

probability at most
n\ [ ¢\ @ /ne
P[R=1I < — < <172
|7 ]_<€><m> _<m> = 1/2,

where (a) uses the inequality (;}) < (ne/l)".
There are ¢ intervals of length ¢, and each equals R with probability at most 1/2¢.
By the union bound,

l
PIRI=( < ;.

[\

Altogether, the expected length of R is
E[|R|] = Z
¢

as desired.

3.3.2 Technical preliminaries: 4-wise independence

Our goal now is to establish the same constant time running time for hash functions
with limited independence. This analysis will require a particular concentration
inequality for 4-wise independence hash functions. Here we only state a definition and
the lemma statement; a more detailed discussion and proof is given in Section 3.4.
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Definition 3.4. A collection of n variables Xy, ..., X, is k-wise independent if for
any k variables X; ..., X, , and values yy,vys, ..., Yy, we have

P[le = ylaXiz =Yz, 7X

i

= y| = P[X;, = p1] P[Xi, = vo] - - - P[Xi, = wi].

Thus a k-wise independent hash family is one where the hash values are k-wise
independent.

In our applications, we will be interested in 5-wise independent hash functions. In
the analysis, we will encounter sums of 4-wise independent random variables. The
following lemma will be very important.

Lemma 3.5. Let X1, Xs,..., X, € {0,1} be 4-wise independent random variables
where P[X; = 1] = p for eachi. Let u = pn be the expected sum and assume p > 1.
Then for all B > p,

n 4 2
Plzxizuw]g“.
=1

To develop some intuition, let us compare the lemma above to Markov’s inequality.
Let Xy,..., X, and p be as in Lemma 3.5. Markov’s inequality say that for all a > 0,

1

PXi+---+X,>(1 < . 3.1
(Xt X 2 (Tt eju] < 7 (3.1)
Lemma 3.5 says that
4
PX i+ - +X,>1+a)pu < i (3.2)

Compare the RHS of (3.1) with the RHS of (3.2). In (3.2), the upper bound is
decreasing in « at a 1/a* rate, compared 1/c in (3.1). Moreover, (3.2) is decreasing in
the expected value u at a rate of 1/u?. That is, the greater the mean, the smaller the
probability of deviated from the mean. This is an example of a concentration inequality.
We will soon see why this helpful in the analysis of linear probing.

3.3.3 Analysis of linear probing with 5-wise independence.

Theorem 3.6. Let h be 5-wise independent. For m > 8n, linear probing takes expected
constant time per operation.
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Proof. As discussed in Section 3.3.1, the running time of an operation on an item x is

bounded by the length of the run R containing h(z). Let i = h(x), and let R be the

run at index i. As before, we have
[running time}

< B[R] = 3 (P[R| = 1)

up to constants)|
(up ) -

and we want to bound P[|R| = /] for each ¢. Here we apply a “doubling trick” and
group the run lengths by powers of 2:

[log ]

<Y UP[RI=0< Y 2"P[2Ml <RI <2f]. (3.3
/=1 k=1

{running time]

(up to constants)

We fix k& € N and analyze the event that 281 < |R| < 2%, Let
I =1[i— (2" = 1),i + 2% — 1]

be the interval of length 28! 4 1 centered at i.

Observe that all the items occupying R were also hashed into R. Moreover, if R has
length |R| < 2% and contains 7, then R is contained in I,. Thus, for each k, we have

k—1
P{Qkfl <|R| < 2’“} < P[at least 2 other}

items hash into I

Let

def # other items
~ 7 |hashing into I}, |

Since h is 5-wise independent, conditional on h(x) = i, the remaining hash values are
4-wise independent. Each lands in I}, with probability p = |I;|/m. We have

Iin @
:|Tn’/ §2k2’
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where (a) is because m > 8n. We have

2 4 2k72 2
# other items ok—1 (®) 4p ( ) 1
hashing into [ = < k—1 4 < k—2)4 < 2k—6"
ashing 1nto Iy (2* “) (2*) 2

Here (b) is by Lemma 3.8. Plugging back into RHS(3.3) above, we have

running time e k 1 6 e 1 6
E[(up to Constants)} < RHS(S‘%) < Z 2" 92k—6 =2 Z ? = 2%
k=1 k=1
A constant! O

3.4 4-wise independence

We close the chapter with some probabilistic analysis of k-wise independent random
variables. In particular we prove Lemma 3.5, which played a key role in the analysis
of linear probing.

3.4.1 Expectations of products of k-wise independent families

Recall the definition of k-wise independent random variables. The following lemma
observes that the expected value of a product of (at most) k, k-wise independent
random variables is the product of the values.

Lemma 3.7. Let Xq,..., X be k-wise independent random variables. Then

Before proving Lemma 3.7, let us give a simple example where k-wise independence
matters. Let Xy, -, X} € {0, 1} where each X; denotes the outcome of a fair coin
toss - 0 for tails, 1 for heads. Then X;--- X, = 1 if all of the coin tosses come up
heads, and 0 otherwise. Consider the following parallel universes.

1. Suppose each X; was based on a different, independent coin toss. That is,
Xq,..., X} are mutually independent. The probability that k independent coin
tosses all comes up heads is 1/2%, so E[X; -+ X}] = 1/2F.

2. Suppose each X; was based on the same coin toss. That is, X; = -+ =
Xj; they are certainly not k-wise independent. Then the probability that all
Xi,..., X =1 1is the probability of a single coin coming up heads, 1/2, and so
E[X; - X3 =1/2.
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Here there is an exponential gap between independent and non-independent coin
tosses.

Proof of Lemma 5.7. We have

E[X1X2 ce ch]

= Z ?lez---ykP[Xlzyl,Xzzyz,-~->Xk:yk]
Y1,Y2;5--+y Yk

&) > e u PIXy = 5| P[Xy = yo] - - P[X} = 3]
Y1,Y25---5 Yk

= <Z n P[Xl = Z/l]) (Z Yo P[Xz = y2]> T (Z Yk P[Xk = yk]>
Y1 Y2 Yk
< E[X1] E[X,] - E[X4].
Here (a) is by definition of expectation’. (b) is by k-wise independence. (c) is by
definition of expectation, for each Xj. O
3.4.2 A concentration inequality for 4-wise independent sums.

Now we prove Lemma 3.5. Below the claim is stated slightly more generally than in
Lemma 3.5.

Lemma 3.8. Let X1, X5,..., X, € {0,1} be 4-wise independent variables where for
each i, B[ X;] =p. Let pw=pn=E[X" | X;|. Then for any 5 >0,

f 4 3p°
54

P lz X > p+ 5] <
i=1
Proof. We have

(2) E{( i=1 Xi — M)ﬂ

(®)
<

n 4
(z X - u) > g :
=1 B

The key step is (a), where we raise both sides to the fourth power. (b) is by Markov’s
inequality. We claim that

P[ixizum] =P[§Xi—uzﬁl 2p
=1 =1

E <+ 347,

(S0

"We are summing over all possible outcomes (y1, ..., yx) of (X1,..., X)), multiplying the value,
Y1+ Yk, with the probability of the outcome, P[X1 = y1,..., Xi = yi].
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which would complete the proof. We first have

(&0-) | == (Bom-)’

because = pn. Now, (X1, (X; — p))* expands out to the sum

Zn:(Xz- —p)' + (3) (X = p)H(X; =)+ ((r;l(onomials w/ Some). (3.4)

= ;. —p) w/ degree 1

E =E

Some examples of the third category would be (X; — p)3(Xy — p), (X1 — p)*(Xs —
p) (X3 —p), and (X7 — p)(Xy — p)(X35 — p)(X4 — p). Consider the expected value of
each of these categories of monomials.

1. For each i, we have
E|(X;—p)'| =p(1—p)* + (1 - p)p'p(1 - p).
2. For each i # j, we have
E[(X; - p)*(X; - p)*] 2E[(X. — p)?| B[(X, — p)*] < P21 - ).
Here (c) is because of pairwise independence. (d) is because
E[(Xi—p)’| =p(1 —p)* + (1= p)p* < p(1 - p).

3. Each monomial in the third category has expected value 0. This is because we
can pull out the degree 1 term by independence, which has expected value 0.
For example,

E{(X1 — )’ (Xa — p2)} = E[(Xl - pl)ﬂ E[X; —py] £0,
where (e) is by pairwise independence, and (f) is because E[ Xy — po] = 0.

Plugging back in above, we have

4
L n\ (4
Bl (LX) ] =t =)+ (3) (5) (20 - 02) < -t 302
i=1
as desired. This completes the proof. O

Remark 3.9. The claim would hold even for X; not identically distributed (as long as
they are 4-wise independent and are each in [0, 1]). The restrictive assumptions here
simplify the exposition and suffice for our applications.
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3.5

Takeaways

Dictionary data structures provide everyday motivation for studying randomiza-
tion, where hash tables offer simpler and better performance (in expectation)
than search trees.

There are different ways to implement hash tables and they mostly differ in how
they handle collisions.

Chaining uses linked lists to handle collisions. It has reasonable performance in
expectation for universal hash functions, and stronger guarantees when the hash
function is more independent.

Linear probing is perhaps the easiest hash table to implement, and scanning
an array is hardware-friendly. It had been observed to perform well in practice
long before it had been properly analyzed.

The analysis of linear probing cleverly uses canonical intervals (doubling in size)
to limit the number of “bad events” we have to avoid, to roughly log n (per key).

It turns out that 5-wise independence is sufficient for linear probing to have O(1)
running time in expectation. Interestingly, 4-wise independence is not enough.

3.6 Additional notes and materials

Thorup [Tholba] describes several families of hash functions with both theoretical
and practical considerations. See [Eril7] for additional notes on hashing.

Lecture materials. Click on the links below for the following files:

e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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Spring 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

3.7 Exercises

Exercise 3.1. Let h : [n] — [¢] be an ideal hash function, with ¢ > n. What is the
exact probability that h has no collisions (i.e., h is injective)?

Exercise 3.2. Consider the particular case of hash tables with chaining with k =n
and an ideal hash function h : [n] — [n]. Let A[l..n] be the cells of the hash table.

1. Consider a particular array slot A[i]. Show that for £ € N, the probability that
Ali] has > ¢ items hashed to it is

1
Pat least ¢ items being hashed to A[i]] < ik

2. Show that, with probability of error < 1/n?, the maximum length is at most
O(log(n)/loglogn).?

Exercise 3.3. The goal of this exercise is to show how to get constant time access
for n keys with O(n) space, using only universal hash functions. We will require the
following fact that we ask you to prove.

1. Let h: [n] — [k] be a universal hash function. Show that for k& > n? h has no
collisions with probability > 1/2.

Now we describe the data structure. We first allocate an array A[l..n] of size n.
We have one universal hash function hg into [n]. If we have a set of (say) k collisions
at an array cell A[i], rather than making a linked list of length &, and we build another
hash table, with a new universal hash function h;, of size k?, with no collisions (per
part 1). (We may have to retry if there is a collision.) If the total size (summing the
lengths of the first arrray and each of the second arrays) comes out to bigger than
(say) 5n, we try again.

8The simple lower bound of £! > (¢/2)%/? may be helpful. Tt is implicit in the O(---) notation
that your bound need only hold for n sufficiently large.
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2. For each i =1,...,n, let k; be the number of keys that hash to the ith cell. We

have
(sum of array sizes of our data structure) < n + i k2.
i=1
Show that?
. k? < mn + O(total # of collisions (w/r/t ho)).
i=1
3. Show that
E[total # of collisions (w/r/t ho)] < n/2.
4. Show that

P[(sum of all array sizes) > Cn] < 1/2
for some constant C' > 0. (C' =5 is possible.)

Taken together, steps 1 to 3 above show that this approach will build a “perfect”
hash table over the n keys in O(n) space with probability of success at least 1/2, using
only universal hash functions. Even if it fails to work, we can then keep repeating the
construction until it succeeds. This approach works better in static settings, when the

set of keys is fixed.

9Here a “collision” is an unordered pair of keys with the same hash. The O(:--) means you can
choose whatever constant you find convenient; 2 is possible.
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Chapter 4

Sampling edges

4.1 Minimum cut

Recall the minimum cut problem in undirected graphs. The input consists of a
connected, undirected graph G = (V, E) with positive edge capacities ¢ : E'— R-g. A
cut is a set of edges C' C E whose removal disconnects the graph. The goal is to

minimize »  ¢(e) over all cuts C' C E. (4.1)
ecC

This problem is polynomial time solvable. Whatever the optimum cut is, it must be a
minimum (s, t)-cut for some pair of vertices s and ¢. Thus to find the global minimum,
one can guess s and t by looping over V| and compute the minimum {s,¢}-cut for
each choice of s and ¢. (Better yet: fix s, and loop over all ¢.)

For a set of vertices S, let §(S) denote the set of edges with exactly one endpoint
in S. §(9) is called the cut induced by S. The induced cuts are also the inclusionwise
minimal cuts, and it suffices to consider only the induced cuts when solving (Min-Cut).

We will study a subtle algorithm discovered by Karger [Kar93], that has been
influential beyond the minimum cut problem. Consider the following description of
Karger’s algorithm.

Repeatedly sample edges in proportion to their capacities until there is only
one cut from which we have not yet sampled any edges. Return this cut.

This algorithm is clearly ridiculous. For the unweighted setting, the above algorithm
is equivalent to the following, equally absurd approach (see exercise C.52).

Independently assign every edge e € E a weight w, € [0, 1] uniformly at
random. Build the minimum weight spanning tree T w/r/t w. Let e be
the heaviest edge in T'. Return the cut induced by the two components of
T—e.
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Figure 4.1: What is the minimum cut in this graph?

Compare the two approaches above. Of course we know how to compute the
minimum spanning tree; among other approaches, we can repeatedly add the smallest
weight edge to T that does not create a cycle. On the other hand, in the first approach,
it might appear difficult to keep track of which cuts we have and have not sampled
from, being that there are so many cuts. This can be addressed by contracting the
graph.

Suppose we sample an edge e = {s,t}. Then
we know that any cut 6(S), where s € S and
t ¢ S, has now been sampled from. Thus we can
safely contract e; replacing s and ¢t with a single
vertex v that has the sum® of edges incident to s
and t. Note that contracting e will only effect cuts that contain e.

Now imagine we contract edges as we sample them. Eventually there are only two
vertices left in the contracted graph, which represent two connected components in
the input graph. These components induce the only cut we have not yet sampled
from, and this is the cut that we return.

Pseudocode for the contraction algorithm is given in Fig. 4.2. Here, for an edge
e € G, welet G/e = (V/e, E/e) denote the graph obtained by contracting e, and we
let ¢/e : E/e — Ry denote the corresponding capacities. Figure 4.3 sketches a few
iterations of the algorithm applied to a barbell graph.

More precisely, for every edge f of the form {s,z} or {t,z}, we create a new edge {u, z} with the
same capacity. If s and ¢ both have edges to the same vertex z, we can either create two edges from
u to z with the appropriate capacities, or make a single edge from w to v with the same capacity. We
remove s and t and its incident edges from the graph, replacing them with u and the newly created
edges incident to u.
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random-contractions(G = (V, E),¢)
1. While |E| > 1

A. Sample e ~ ¢

B. G+ GJe,c+cfe

2. Let E = {e}
3. Return the edges in the original graph that contracted to e
Figure 4.2: A randomized minimum cut algorithm due to Karger [Kar93].

@ @WW

Figure 4.3: A few iterations (from left to rlght top to bottom)
random-contractions algorithm apphed to a barbell graph.
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The intuition behind random-contractions is as follows. Here we consider un-
weighted graphs for simplicity. (The intuition is the same for weighted graphs, except
replacing “many edges” with “large capacity”, etc.) Suppose we have an unweighted
graph G = (V, E), and let C' C E be the minimum cut. Since C' is the minimum cut
— keyword minimum — there are presumably very few edges in C'. If we randomly
sample an edge e € F, then hopefully e ¢ C. If C' “survives” this round, then we have
all made some progress because there is one less vertex in the graph after contracting
e. In the next round, C is still the minimum cut, so the high-level logic from the first
round still holds. Thus we can repeatedly sample edges and preserve the hope that
we avoid C.

The above argument hinges on how much smaller C is than all of E. If we can
argue that C' is always a small fraction of F, then that gives hope that C survives
to the end. On the other hand, if C' is even a small constant fraction of G, we will
probably sample from C' after a constant number of rounds. Observe also that over
time, C' becomes a larger and larger fraction of F, as we contract and remove edges
outside of C.

The key observation is that every vertex v induces a cut 6(v), which must have at
least as many edges as C. Thus the minimum cut is at most the minimum degree in
the graph. In turn, since the number of edges in E is the sum of degrees (divided by
2), the minimum cut C' is alt most a 2/n fraction of the total number of edges! This
observation holds initially in the input graph and thereafter in the contracted graphs,
although n decreases by 1 in each iteration.

On the first iteration, C' has at most a 2/n chance of being hit. On the second
interation, assuming C' survived the first iteration, C' has (at most) a 2/(n — 1) chance
of being hit. Continuing in this fashion, assuming C' surivived the first ¢ — 1 iterations,
C has a 2/(n — i+ 1) change of being hit in the ith iteration. If one combines these

problems, one discovers that C' has a > 1/ (g) chance of surviving all n — 1 rounds We

can repeat the experiment (Z) = O(n?) (a polynomial!) number of times to find the

minimum cut with constant probability, and O(n?*log n) times to find the minimum
cut with high probability.

In the sequel, we formalize the the above argument, as well as extend it to positive
capacities. For ease of notation, for a set of edges C C F, we denote the sum of
capacities over C' by

Z c(e) o Z c(e).

ecC ecC

Lemma 4.1. Let C* be the minimum cut in (G,c), and suppose e ¢ C. Then C* is
(or maps to) to the minimum cut in the contracted graph (G/e,c/e).
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Proof sketch. Direct inspection. O
Lemma 4.2. 3 cpc(e) > 2

Proof. Every vertex v has weighted degree - c5,) c(e) > A since 6(v) is a cut. Thus

Y efe) = > 26625(11) c(e) > >\2n

Lemma 4.3. Let e ~ c. Then Ple € C*] < 2.

cle (a)

Proof. We have Ple € C*] = % < 2 by (a) Lemma 4.2. O
eckE

Lemma 4.4. Let C* be a minimum cut. With probability > 1/(;‘), random-

contractions returns C*.

Proof. For k € Z>¢, let Ej, be the event that we have not sampled C* after k iterations.

Initially, P[Ey] = 1, and we want to show that P[FE, 5] > 1/(72‘) By Lemma 4.3, we
have

PlE, | B 1] >1—  for each k € [n].

2
n—(k—1

The probability of succeeding (event E,,_») is at least

PlE, o] = [[ P[E| Ep1] > H(l — f)
Silo (m_22 1
= N
‘ ()

1 n!
2

]

Thus with probability about 1/n?, the random contraction algorithm returns the
minimum cut. To find the minimum cut with constant probability, we rerun the
algorithm O(n?) time and return the best cut. To find the minimum cut with high
probability, we rerun the algorithm O(n?logn) times.

The nice thing about repetition is that we can run the randomized trials in
parallel. Moreover, a single instance of the contraction algorithm (via its connection
to minimum spanning trees) can be made to run in polylog(n) time with polynomially
many processors. Thus one obtains a randomized parallel algorithm for minimum cut.
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branching-contractions(G = (V, E), ¢)

1. Let n = |V|. If n <3 then compute the min-cut by brute force.
2. Until |V] = [%W +1:
A. Sample e ~ ¢ and contract e in G.
3. (] < branching-contractions(G,c).
4. (5 < branching-contractions(G,c).

5. Uncontract and return the minimum of Cy and C,.

Figure 4.4: A randomized minimum cut algorithm that amplifies the
random-contractions algorithm by branching, due to Karger and Stein [KS96].

Corollary 4.5. A randomized minimum cut can be computed in parallel in polyloga-
rithmic time with a polynomial number of processors.

That said, random-contractions is not just an algorithm. It is also a surprising
structural observation about the number of minimum cuts in an undirected graph. In
the above algorithm, any fixed minimum cut is returned with probability 1/ (3) This

implies that there are at most (Z) minimum cuts in the graph!

Corollary 4.6. There are at most (g) minimum cuts in a graph.

4.2 Amplification by branching

The randomized-contraction algorithm preserves a fixed minimum cut with probabil-
ity at least 1/ (g) One can amplify this algorithm directly by running it independently

O(n*logn) and outputting the minimum over all the trials. With high probability,
the minimum cut lies in one of these O(n*logn) cuts.

Karger and Stein [KS96] reduced the probability of failure more efficiently by an
amplification process called branching. To motivate the branching technique, recall
from Section 4.1 that the probability of failure increases as the number of remaining
vertices decreases. Instead of restarting the entire algorithm from the beginning
again and again, one might restart the algorithm from some relatively confident point
partway through. One might further apply this strategy recursively.

Karger and Stein [KS96] proposed randomly contracting edges as long as the
probability of avoiding the min-cut is still at least 1/2, and then “branching”; i.e.,
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running two independent processes that continue from this point. The branching
is recursive: each of the two independent trials also continue for a relatively safe
number of iterations before branching again. This refined amplification process, it
is shown below, is much more efficient than repeated independent trials of random-
contractions. The amplification technique is interesting in its own right and extends
past this particular problem.

A sketch of the algorithm, which we call branching-contractions, is given in
Fig. 4.4.

Lemma 4.7. Let C*, and suppose we contract n — k edges sequentially at random.

The probability that none of theses edges samples the minimum cut is at least fLEI:Lj))

Proof. For i € N, let E; be the probability that we have not sampled C* after ¢
iterations. We ware interested in P[E,_x]. We have

Pl i) = T PIE: | £ i) & ﬁj@—?)

1=1 i=k+1

s () ke-1

by (a) Lemma 4.3. O

Theorem 4.8. branching-contractions runs in O(n*logn), and returns a minimum
cut with probability 2(1/logn).

Proof. We first prove the running time, and then discuss the correctness. The running
time is dominated by the recurrence

f(n) < 2f(p(n)) +n® for p(n) = n/V2+c

for some constant ¢ > 0. The recursion tree is drawn in Fig. 4.5. For ¢ € N, let
' = po ! recursively apply ¢ ¢ times (e.g., o' = ¢). Each problem at depth ¢ has

size at most
#o= () 5l0) o= () e

Since there are 2¢ problems at depth i, the total amount of work at level i is

2 (¢i(n)) =2 ((\/1§>
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N n’l
7\ .

(?(n\ @n) A(@n) = (xn")
GO ORMOIR(D) Lx(@n))'= O(n®)

¢ (\oa n \eve\b) .

o .
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Figure 4.5: A recursion tree analysis for branching-contractions.

Over O(logn) levels, then, the total work is O(n*logn).

The proof of correctness is based on a more general phenomena, called the Galton-
Watson process. We study the Galton-Watson process in greater generality in the
following section, and here we only give the reduction from branching-contractions
to the Galton-Watson process.

We can arrange the recursive calls in a binary tree. Each node consists of a
subproblem, with two children consisting of the two subproblems. The leaves are the
constant-size subgraphs that can be computed by brute force. The height is O(log n)
because every level decreases n by a constant factor.

The process at a subtree succeeds iff the node succeeds and one of the two subtrees
succeeds, and each node succeeds with probability 1/2. The overall algorithm succeeds
iff there is a root to leaf path where every node succeeds. This is the Galton-Watson
process over O(log n) generations, which (by Theorem 4.9 below), has a Q(1/logn)
probability of success. O
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4.3 Randomized branching

Theorem 4.9. Let T be a complete binary tree of height k > 2, and suppose every
edge is deleted independently with probability 1/2. The probability that there is a leaf
connected to the root is > 1/k.

Proof. For i € N. Let p; be the probability that a particular node at height 7 is
connected to a subleaf. We have py = 1. For a node at height i + 1, the probability
that there is no path to a leaf via a particular child is
1 pi
—4+-(1=—p)=1-=.
5t 5 —n)
pi+1 is 1 one minus the probabilities there is no path to a leaf via either child, which

by independence to the two subtrees is

2
Di Di
Pist ( 2) p( 4> (42)

The first three values are
po=1,p1=3/4,and p, = 2 > 1/2.

We claim by induction on k that p, > % for all £ > 2. Looking at the RHS of (2), we
first observe that function

f(z) = :E(l — %) is increasing for x < 2,

which can be seen from its derivative f'(x) =1—§ > 0. In particular, to lower bound
Pra1 via (2), we can replace py by any lower bound for p,. By induction, p, > 1/k,

hence
1 1 1 1 @ 1
a2 (o) = p - d
The last inequality (a) is obtained by

1 1 1

1
_ > for k> 1. 43
E k+1 R4k = (4.3)
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4.4 Additional notes and materials

Lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

4.5 Exercises

Exercise 4.1. Consider the randomized algorithm for minimum cut based on building
the minimum spanning tree w/r/t randomized weights, described in Section 4.1.

1. Prove that this algorithm is equivalent to the random contractions algorithm
for unweighted graphs.

2. Adjust the randomized spanning tree algorithm to account for weights, and

prove its correctness.

Exercise 4.2. Let G = (V, E) be an undirected graph. For k € N a k-cut is a set of
edges whose removal disconnects the graph into at least & connected components. Note
that for £ > 3, the minimum k-cut problem cannot easily be reduced to (s,t)-flow. In
fact, the problem is NP-Hard when k is part of the input.?

1. Briefly describe how to modify the random-contractions to return a k-cut.’

2. Analyze the probability that your modified algorithm returns a minimum k-cut.*

2You might find it helpful to focus on the case k = 3 and then generalize afterwards. Although
we ask you to work out the dependency on k, conceptually, it might help to think of k as being
relatively small compared to n.

3Your algorithm design may be informed by your calculations in part 2.

4You may want to pattern your analysis after the one for minimum (2-)cut; in particular, you
may want to develop analogs for Lemmas 4.2 and 4.3.
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3. Describe and analyze an algorithm, using your modified random-contractions
as a subroutine, that computes a minimum k-cut with high probability in
O(nclk log® n) time for constants ¢; and cp. (We leave it to you to identify

these constants; as usual, the faster the running time, the better.)

4. How does your algorithm relate to the preceding statement that k-cut is NP-Hard
when k is part of the input?

Exercise 4.3. Consider the minimum cut problem in undirected graphs. We say that
a cut C' = 4§(9) is a 2-approzimate minimum cut it its capacity is at most twice the
capacity of the minimum cut.

1. Let C' be an 2-approximate minimum cut. Suppose we run the random-
contractions algorithm run until there are 5 vertices. Show that C' is preserved
by the algorithm with probability > 1/ (Z)

2. Show the number of 2-approximate minimum cuts is at most
O(n4).

Exercise 4.4. Consider the minimum cut problem in undirected graphs. For o > 1,
we say that a cut C' = 0(5) is an a-approximate minimum cut it its capacity is at
most « times the capacity of the minimum cut.

1. Let C be an a-approximate minimum cut. Suppose we run the random-
contractions algorithm run until there are O(«) vertices remaining. Show
that C' is preserved by the algorithm with probability > 1/ (O?a))'

2. Show the number of a-approximate minimum cuts is at most

nO@.
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Figure 4.6: The minimum cut from Fig. 4.1
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Chapter 5

Random Sums and Graphs

5.1 Random sums

If, out of 100 coin tosses, you were told that 50 of them were heads, would you be
surprised? Actually, you should be a little surprised. The odds of getting exactly 50
heads is about 8%. But if you were told that the number was in the range 45 to 55,
you probably wouldn’t think much of it.

If you were told that all 100 coin tosses came up heads, you wouldn’t believe it.
The odds of that, we know, is 1/2'%. If you bet money and lost on this event, you
would be outraged (and, at even odds, certainly broke for the rest of eternity).

Suppose you were told that at most 25 coin tosses came up heads. Should you be
surprised? On one hand, 25 is half of the expected amount. On the other hand, the
claim is not that there was exactly 25 heads, but at most 25 heads. There could be
25, 24, 23, etc., down to 0. Although probability of getting any one of these counts —
being far from average — should be low, there are also 26 of these events. Do the
probabilities add up to very much? It turns out that the probability of getting 25 or
fewer heads is tiny: about 2.818 x 1077,

The scale is very important in this discussion. If, out of 10 coin tosses, you got 4
or fewer heads, you shouldn’t be too surprised. There is (roughly) a 37.7% chance
of getting at most 4 heads. But if at most 40% of 1000 coin tosses came up heads,
you should be wvery surprised. The odds of this occurring is occurring is roughly
1.364 x 10710,

84



5. Random Sums and Graphs Kent Quanrud
5.1. Random sums Fall 2025

0.25
1

+ p=0.5and n=20
* p=0.7 and n=20
® p=0.5 and n=40

0.10 0.15 0.20
1 1 1

0.05
1

T T T T T
0 10 20 30 40

The point generalizes to coins with any fixed probability of heads, p € [0, 1]. The
binomial distribution, denoted B(n,p), is the distribution of the number of heads over
n independent coin tosses that each flip heads with probability p. The probabilities
of different binomial distributions is plotted above. (See also [Wikb].)

We write B ~ B(n, p) to denote a random variable B € {0,...,n} drawn from the
binomial distribution B(n,p). The expected value of B is E[B] = pn. The following
lemma bounds the probability of B being a multiplicative factor smaller than its
mean, pn. Note that the probability decays exponentially fast in the mean.

Lemma 5.1. Let B ~ B(n,p) and € € (0,1). Then
P[B < (1 —e)pn] < e~/
Proof. We have

P[B < (1—e)pn] = Ple™? > e~ < = ImBle=P] (5.1)

by (a) Markov’s inequality. It remains to analyze E[eEB] Write B as the sum

B = X; + .-+ X, where each X; is an independent {0, 1}-random variable with
P[X; = 1] = p. Now we have

E[e~F| = E[e-i-XemeXn] W gle-Xi| BlemX2] . EeXe],
where (b) is because the X;’s are independent. For each X;, we have
Ble ] =pe 4+ (1-p) =1+pe~1)

<p(l-ete/2) +(1-p) =1 (c—/2)p

@ (/2.
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Here (c¢) uses the inequality e < 1 —x 4 2?/2 for all z > 0'. (d) is by the inequality
1+ 2 <e® for all . Thus,

E[e‘EB} = E[e_EXl] E[e_EXQ] - 'E[e_EX”} < e (/2m (5.2)
Putting everything together, we have
P[B < (1 . e)pn] 2 ee(lfe)an[efeB} gee(lfe)pn—(efg/z)pn — 67521)11/27

by (e) inequality (5.1) and (f) inequality (5.2), as desired. ]

One can prove a similar inequality bounding the probability that B exceeds its
mean by a multiplicative factor. The proof is similar to Lemma 5.1 and left as
exercise C.36.

Lemma 5.2. Let B ~ B(n,p) and € € (0,1). Then for all pu > pn
P[B > (1+e)u] < e H/2

(The most common setting of Lemma 5.2 is when p = pn. But allowing x> pn
can sometimes be convenient.)

5.2 Random graphs

Paul Erdés, inspired by Ramsey [Ram30] before him, had a series of works analyzing
random graphs. The results can mostly be grouped into two broad categories. First,
he designed elaborate randomized constructions of graphs and showed that with
nonzero probability, they can possess certain counterintuitive, seemingly impossible
properties. This general approach is now called Ramsey theory. Second, he showed
that for natural random graph models, these graphs — however random — tend to be
extremely consistent about certain other properties.

This discussion falls in the latter category. We will study the G(n,p) random
graph, sometimes called Erd6s-Rényi graphs based on work by Erdos and Rényi [ER59;
ERG60]. A random graph from G(n, p) is an undirected graph over n vertices, where
every edge is sampled independently with probability p. By now there is a large

ITo see that
1—z+22/2>e”

for all > 0, observe first that both sides equal 1 at x = 0. The derivative of the LHS, —(1 — z), is
always at least the RHS of the derivative of the RHS, —e™®, by the inequality 1 4+ y < e¥ for all y.
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\

Figure 5.1: A random graph sampled from G (n,.01) [Von].

catalog of nontrivial and useful properties that, depending on p, are almost certain to
appear or not appear in such a graph (for sufficiently large n). Moreover, Erdos and
Rényi showed that these properties can vary dramatically with very small changes in
p. Consider the following theorem.

Theorem 5.3. Consider a random graph G ~ G(n,p) for p = ¢/n, where ¢ is a
constant.

1. If ¢ > 1, then with high probability, there is exactly one connected component of
G with Q(n) vertices, and all other components have size < O(logn).

2. For ¢ < 1, then with high probability, all connected components of G have size
< O(logn).

The parameter ¢ above models the average degree (in expectation). The drama
lies in the fact that a tiny change in the average degree ¢ — from .999 to 1.0001 — flips
the qualitative nature of a typical random graph from one of many tiny components
to essentially one giant component. This is an example of a threshold phenomena;
alternatively, a nonlinear dynamic. Such phenomena is not rare: it occurs in many
situations in physics, as well as in models for epidemiology and social networks. Let
us briefly mention — without claiming to be very precise — that the sensitivity to ¢
gives some motivation for controlling the “reproductive number” when analyzing and
preventing the spread of infectious diseases. The reproductive number is the expected
number of healthy individuals that a sick individual effects.

We note that further research has obtained a much more refined and detailed
understanding than stated in Theorem 5.3. We refer the reader to [Bol98, Chapter 7]
for further details and other results in this area.

We present the proof for ¢ > 1. The second case of ¢ < 1 is left to the reader as
exercise C.14.
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5.2.1 Overview of the proof for ¢ > 1

We will prove part 1 of Theorem 5.3 in roughly three parts.

Part 1: the gap theorem. Observe that in Theorem 5.3 above, regardless of the
value of p, there are simply no “medium”-size components, such as a component of
size \/n or of size n/log(n). The intermediate sizes are ruled out by the following
“gap theorem”.

Lemma 5.4. There is a universal constant C > 0, such that for all e € (0,1), and for
all n > 0 sufficiently large, and p = (1 + €)/n, we have the following. For a random
graph G(n,p), with probability of error < 1/n*, no component has k vertices for any
value k in the interval
Clog(n)
€2 - - C
We analyze Lemma 5.4 theorem in Section 5.3. The proof makes a surprising
connection to our discussion on random sums in Section 5.1.

Part 2: existence of a large component. Lemma 5.4 establishes that all
components are either very small or very big. However it does not assert that there are
any big components. The next theorem, proven in Section 5.4 and based on analyzing
a Galton-Watson branching process, shows that any single vertex has a reasonable
chance of being in a component that is not small.

Lemma 5.5. Let p= (1 +¢€)/n fore > 0. Let v €V be a vertex. For all 3 < h < en,
with probability at least 1/h, v has at least 1 + h vertices in its connected component.

Lemma 5.5 implies that there is almost certainly at least one giant component
as follows. Let h = clog(n)/e? for a sufficiently large constant ¢, and let ¢ = 1/h =
Q(e?/log(n)). Call a component “small” if it has at most h vertices. We want to
argue that, for p > 1/n, there is at least one component that is not small. Since the
gap theorem (Lemma 5.4) rules out all intermediate sizes, this would imply that there
is at least one giant component of size Q(e?n).

By Lemma 5.5, any vertex v has at least a probability ¢ of not being in a small
component. Now imagine a process where we first randomly select a vertex v and
inspect its component. If it is not small, then we have obtained the non-small
component we seek. Otherwise, if the component is small, then we throw out v and
its component, and randomly select another vertex as v, and repeat. Each vertex we
inspect has probability ¢ of not being in a small component. We would have to fail
on the order of n/h consecutive samples to conclude there is no small component -
which happens with diminishingly small probability. Thus with very high probability,
there is at least one component that is not small.

88



5. Random Sums and Graphs Kent Quanrud
5.8. A gap in component size Fall 2025

Part 3: uniqueness of the giant component. Can there be two giant compo-
nents? The answer is no (with high probability) and here is a quick explanation.
Instead of sampling from G(n, p) directly, we can first sample two graphs G = (V4, E})
and Gy = (Va, E») from G(n/2,p). In the second stage we can sample each cross-edge
(v1,v9), where v; € Vi and vy € V3, independently with probability p. Now, by
applying the theory we have already developed to GGy and G5, GG; and G, will have
some giant components, each of size Q(e?n). Note that each graph can only have
O(1/€*) of them.

Let ' be a giant component in G; and let C5 be a giant component in G5. We can
sample up to |C1[|Ca| > Q(e*n?) edges between C; and Cy. Recalling that p is greater
than 1/n, the odds that all Q(e'n?) edges fail to be sampled is vanishingly small.? That
is, we almost certainly connect C; and Cs5. Since there are so few giant components,
we will almost certainly connect all of them together. Thus, for p > (1 + ¢€)/n for
e > 0, we get a unique giant component. This establishes Theorem 5.3 for ¢ > 1.

5.3 A gap in component size

In this section we prove Lemma 5.4, which asserts that when p = (1 + €)/n for a
constant € > 0, then with high probability, all components are either very small or
very large. Our analysis follows an approach due to Karp [Kar90]. His proof is also
described in [Bol98]. We first restate Lemma 5.4 for the reader’s convenience.

Lemma 5.4. There is a universal constant C > 0, such that for all e € (0,1), and for
all n > 0 sufficiently large, and p = (1 + €)/n, we have the following. For a random
graph G(n,p), with probability of error < 1/n* no component has k vertices for any
value k in the interval
C'log(n) €
— <k —.
e — ~C
For a vertex v € V, let C'(v) C V be the (randomized) component of v. To analyze
C(v), we imagine revealing C'(v) by a search algorithm. We maintain a collection

2We fail with probability (1 — p)9(64"2) < e~ %(e'n),
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of vertices known to be connected to v; initially just {v}. Each iteration i, starting
from v, select a vertex v; that is known to be in C(v), but has not been explored.
Then “explore” v; by inspecting all of the edges incident to v;, possibly adding to the
collection of vertices known to be connected to v (but not yet explored).

We annotate this process as follows. For 7 € N, let

« v; be the vertex that is explored in the ith iteration (or nil if all of C'(v) has
already been explored).

For each © € Z, let
o A, be the set of vertices known to be in C(v) after i iterations, and let
e B, be the set of vertices that have been explored.

For the sake of concreteness, one can imagine processing the v;’s in BFS order. Recall

that BF'S marks each vertex when the vertex is first encountered, and if the vertex

was unmarked, it is added to a queue. The next vertex visited is drawn from the

queue. In terms of BFS, then, A; is the set of vertices marked after ¢ iterations, and

B; is the set of vertices that have left the queue and have been fully processed.
Ultimately, B;, A;, v; are built up incrementally as follows.

1. Initially, we have By = () and Ay = {v}.

2. In the first iteration, set v; = v, set By = {v1}, and set A; = Ay U N(vy), where
N(vq) is the (randomized) neighborhood of v;.

3. In the ith iteration, if B,y # A;_1, then select (any) v; € A;_1 \ Bi_1. Set
B; = B;_1U{v;} and A; = A;_1 U N(v;). Otherwise we terminate with C'(v) =
By = A1

The process terminates when B; = A;. But since B; C A; and |B;| = i, this is
precisely when |A;| = i. As long as |A;| > i, A;;1 is generated by taking the union of
A; and a random sample of V' — A; where each vertex is included with probability p.
Thus we could have generated the sequence of A;’s instead by the following equivalent
process, which omits any mention of B; or v;.
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3.

. Initially set Ag = {v}.

. For each i € N, let S sample each vertex in V' \ A, ; independently with

probability p and set A; = A;_ 1 U S.

Let ¢ be the first index such that |A4;| = ¢, and return C'(v) = A;.

Fix an iteration i. The alternative (but equivalent) process described above
exposes a simple distribution for A;. For any vertex z # v, we have x ¢ A; iff x
failed to be added in each of the first i rounds, which occurs with probability exactly

(I—p

)*. Moreover this event is independent across vertices. Thus |A;| is distributed

exactly as the binomial distribution with n — 1 coins and probability 1 — (1 — p)?; i.e.,
[Ai] ~ B(n—1,1—(1—p)).
We first bound E[|A;]].

Lemma 5.6. Let i < en/2(1+¢€). Then E[|A;]] > (14 €/2)i.

Proof. We have

. . 1 (a)
(1—p)f<e™<1—ip+ §(ip)2 <1—ip+eip/d=1—(1—¢/b)ip.

where (a) is because ip = (1 + €)i/n < ¢/2. Thus

Al =1+ (1—(1—p))(n—1) > (1 - ¢/4)ipn > (1 +¢/2)i.

For (b) we observe that (1 —¢/4)(1+¢€) > (14 ¢/2) for € > 0 sufficiently small. [

Now we analyze the concentration of |A4;| around its mean.

Lemma 5.7. Let i < en/2(1 +€). Then P[|4;| <i] < e~ /8.

Proof. We have

Pl A <i] < PAi] < (1—¢/2) B[JA]]] € e /%,

Here (a) is by Lemma 5.6. (b) is by the tail inequality on binomial distributions,
Lemma 5.1. 0

To complete the proof of the gap theorem, let

I= {1 €N:32In(n)/e® <i<en/2((1+ 6))}
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Figure 5.2: A complete binary tree of height 3, where each edge was deleted with probability
1/2.

For all © € I, we have
P[|A;] <i] < 1/n*
By the union bound, we have

PllA;| >iforallieI] >1-) P[4 <i>1-1/n.

iel

Thus with probability > 1 — 1/n, the number of vertices in the connected component
of v, |C(v)|, does not lie in the range /. Taking the union bound over all v € V
establishes part 1 of Lemma 5.4.

5.4 Galton-Watson process with general branching factors

We now move onto the second part of the analysis. By now we have established that
there are (with high probability) no “medium” components — all component sizes
have either at most O(log(n)/e?) vertices, or at least Q(e*n) vertices. Now we want
to prove Lemma 5.5, which we first restate for the reader’s convenience.

Lemma 5.5. Let p= (1+¢€)/n fore > 0. Let v € V be a vertex. For all 3 < h < en,
with probability at least 1/h, v has at least 1 + h vertices in its connected component.

The proof is by relation to the so-called Galton-Watson process that arises in the
study of reproducing populations. In the simplest case, imagine a population of size 1.
Each generation, each member of the current generation flips k£ coins, each of which
flips heads with probability 1/k. For each heads, we generate another member of the
next generation. The probabilities and number of coins are configured so that each
member expects to have one child.

What is the probability that the population survives for h iterations, for a given
parameter h? This is answered by the following.
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Theorem 5.8. Let T' be a complete k-ary tree of height h, and suppose every edge is
deleted independently with probability at most 1 — 1/k. Then the probability that there
is a leaf connected to the root is > 1/h for h >3, and > (1 —e 1" for h < 2.

An example of the case k = 2 is drawn in Fig. 5.2.

Proof. For i € N, let p; be the probability that a particular node at height i is
connected to a subleaf. We have py = 1. For a node at height i + 1, the probability
that there is no path to a leaf via a particular child is

l— 4 (1—p)=1-""

k
Pi
Pi+1:1—<1—k>-

Observe that the RHS is increasing in p;; thus to lower bound p;,1, we can substitute
any lower bound for p;. We have

By independence, we have

po =1,

m=1-(1-1/k)">1-¢"'> 63,
pp=1—(1—.63/k)" >1—e% > 467,
ps>1—(1—.467/k)" >1— e > 373 > 1/3.

We claim by induction on ¢ that p; > 1/i for all i > 3. The base case i = 3 was just
proven. For the general case,

1

(a) ok _1i ® 1
1> 1—(1—1/ik)* >1— > >

S

Here (a) is by induction. (b) applies the inequality 1 + z < e” for all z. (c) applies
the inequality e® <1+ a + %3:2 for x < 0. O

5.4.1 Likelihood of small components

We can use the above branching process to analyze the probability that a given vertex
v is in a component of size > h, for any h < en/(1 + ).

Fix h < en/(1+¢€). Let k =n/(1+ ¢€). Consider a Galton-Watson process where
each node produces up to k children, each with probability 1/k. As proven above, the
population lasts h generations with probability at least 1/h.
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Now, consider the following alternative randomized experiment: given the same
Galton-Watson process, what is the probability that the populations produces a total
of at least h individuals / nodes (including the root)? If the population survives h
generations, then there are certainly at least h individuals. So the probability that
the population produces at least A individuals is at least h.

We can imagine “revealing” the Galton-Watson outcome as follows. Initially we
have the root node, without inspecting which of its k children “survive”, and the root
node is the only one known to survive. We select that node and reveal which of its k
children survive. In general, as long as there is a surviving node where we have not
sampled the children, we then sample the k children and reveal which of them survive.
This experiment naturally terminates when we have revealed all the children of all
the “survivors” and there is nothing left to sample. We also terminate early as soon
as we identify at least h survivors.

This version explores the Galton-Watson tree node by node, and does not exploring
the branches that die off. As a different pespective on the same phenomena, we have
the same conclusion — the experiment produces at least h total (surviving) nodes with
probability at least 1/h.

We will relate this to our random graph as follows. Fix a starting vertex v; we
want to analyze the probability that the connected component of v has at least h
vertices. Initially, v is (obviously) in the same connected component as v, and we
have not yet sampled of the neighbors of v. To explore the (randomized) connected
component of v, we choose one vertex that we know is in the same component as v,
but have not yet explored, and then reveal/sample all its neighbors. (The first chosen
vertex is always v.) The process terminates when we have explored all the vertices
known to be connected to w.

Consider the following adjustments to the process which is more conservative.
First of all, we terminate immediately once we have identified h vertices connected to
v. Second, suppose we have a vertex w that is known to be connected to v, but has
not been explored. Since we have identified < h vertices connected to v, there are at
least m — h > k vertices that are not yet (revealed to be) connected to v. Of these, we
select k of them, sample those edges, and add the sampled neighbors to the collection
of vertices connected to v.

This adjusted process is conservative relative to the real one — we omit sampling
some edges, and we terminate as soon as we find h vertices connected to v. So the
probability that the adjusted process finds h vertices connected to v is at most the
probability that there are h vertices connected to v in the random graph. Moreover,
the adjusted process maps directly to the adjusted k-ary Galton-Watson process
mentioned above, where we are only interested in the probability that the population
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reaches h total individuals. Here v corresponds to the root, each vertex w connected to
v corresponds to a node descending from v in the Galton-Watson tree, and “exploring’
from w corresponds to sampling the children of w in the tree.

Putting everything, we conclude that for any h < en/(1 + €), v is connected to at
least h vertices with probability at least 1/h. This gives us Lemma 5.5.

Y

5.4.2 Directed graphs

One could naturally ask the same questions for directed graphs. Let D(n,p) denote
the distribution over directed graphs where every directed edge appears independently
with probability p. We might similarly ask for the maximum number of vertices
reachable from any component, or the size of the maximum strongly component.

It turns out that the analysis of directed graphs can be largely reduced to undirected
graphs, as shown by Karp [Kar90] in the following delightfully simple way.

Theorem 5.9. Let G ~ G(n,p) and D ~ G(n,p), and fix a vertex v. Then the size
of the connected component of v in G, and the number of vertices reachable from v in
D, are identically distributed.

Proof. Let us introduce a second distribution of directed random graphs. Let B(n,p)
be the distribution of directed graphs where we sample each undirected edge {u,v}
independently with probability p, and for each sampled edge, add both directions
(u,v) and (v,u) to the graph. Clearly, for a fixed vertex v, the size of v’s (undirected)
component in G(n,p) is distributed identically to the number of vertices reachable
from v in B(n,p). We claim that the number of vertices reachable from v in B(n, p)
is identically distributed as in D(n,p). At this point let us simply quote Karp [Kar90,
Lemma 1] (with minor changes in notation) whose proof is very elegant.

....To see that the last two random variables are identically distributed,
note that the probability spaces B(n,p) and D(n,p) differ in only one
respect: a digraph G drawn from B(n,p), are (u,v) is present if and only
if arc (v,u) is present, while, in a digraph D drawn from D(n,p), then
the event that (v,u) is present is independent of the event that (u,v) is
present. Thus no experiment based on checking for the presence or absence
of arcs can distinguish between the two probability spaces unless it checks
both an arc and its reversal. But any standard sequential algorithm, such
as breadth-first search or depth-first search, for building a search tree
containing exactly the vertices reachable from vertex 1, checks for the
presence of arc (u,v) only if vertex w is in the search tree and v is not;
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thus it never checks both an arc and its reversal, and accordingly cannot
distinguish B(n,p) from D(n,p).

To summarize the excerpt, standard search algorithms for reachability do not distin-
guish B(n,p) and D(n,p) anyway, so the number of reachable vertices is identically
distributed. O

5.5 Additional notes and materials

Lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

5.6 Exercises

Exercise 5.1. Prove Item 2 of Theorem 5.3.°

Exercise 5.2. Prove Lemma 5.2. (Here the important part is not the constant, 1/3 —
any constant ¢ > 0 is already interesting.)

31t may be helpful to understand the proof of the gap theorem (Lemma 5.4) in Section 5.3.
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Chapter 6

Randomized Rounding

Many of the problems we are interested in are inherently discrete, and unfortunately
many discrete problems are NP-Hard. One general class of NP-hard problems are
integer programs (IPs), which are linear programs where the variables are required to
be integers.
One example is a covering integer program, which is an optimization problem of
the form
n
minimize Z CjT;
j=1
over x € Z>g (6.1)

s.t. ZAz'jIj Z bl for ¢ € [m],

=1

where A € RT;™, b € R, and ¢ € RY,. Here, each variable z; € Z>, models a binary
decision. Each ¢; can be interpreted as the cost of taking x; = 1. For ¢ € [m], the
constraint

j=1

is a covering constraint, saying we must set x; = 1 for enough variables x; so that the
sum of A;; over these variables is at least 0;.

In the set cover problem, we have a family of n sets F = {51, ..., S,}, where each
set S; is a subset of m points Y. The goal is to compute the minimum cardinality
collection of sets, S;,, ..., S;, where iy,..., i € [n], such that

S, US;, U---US;, =U.

The set cover problem is NP-Hard.

97



6. Randomized Rounding Kent Quanrud
Fall 2025

Set cover is the special case of a CIP where c =1, b= 1, and A € {0,1}""". The
coordinates j € [n] correspond to sets, and the coordinates i € [m] correspond to
points. Set j covers point ¢ iff A;; = 1.

Besides covering integer programs, there are also packing integer programs, which
are maximization problems subject to packing (i.e., <) constraints, of the form

n
maximize Z bjy;
i=1

over y € Z%,

m
s.t. Y Agy; < ¢ for i € [m]
j=1
where A € RY;™", b € R, and ¢ € RZ,,. Here each b; can be understood as the “profit”
of taking y; = 1, and we want to maximize the total profit. We are constrained by
the n packing constraints. The knapsack problem is a special case of the covering
integer programs where m = 1.

In general, integer programs maximize or minimize a set of integer variables
over a linear objective, subject to linear equality and inequality constraints.! The
basic appeal of integer programs is that they are very flexible for modeling discrete
optimization problems. Unfortunately, their broad applicability also makes them
NP-Hard.

Integer programs are NP-Hard because the output is required to be discrete. If
we allowed the variables to vary continuously over the reals, we instead have a linear
program (LP). For example, the following describes a linear program for covering
problems similar to the covering integer program above. This time, however, each
variable z; is allowed to take any nonnegative value.

n
minimize Z Cijx;
j=1

n
over z € R,

st. Y Az > b for i € [m].
j=1
Note that any solution feasible to the CIP (6.1) is also feasible for the LP above. As
such, the LP is said to be a relazation of the CIP. It implies that the optimum value
of the LP is less than or equal to the optimum value for the integer program.

nteger programs may have both packing (i.e., Az < b) and covering (i.e., Az > b) constraints.
“Packing integer programs” and “covering integer programs” refer to the special case that have only
packing constraints or only covering constraints, respectively.
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Unlike integer programs, linear programs are polynomial time solvable (!). This
allows for the following general approach to discrete optimization: given an IP
formulation of the problem, instead solve the corresponding LP. The LP provides
a fractional solution satisfying the same constraints, which we can treat as a clue
towards a good integer solution. The goal becomes to convert the fractional solution
to an integer solution, while maintaining feasibility and the objective value. There
are several strategies to round a fractional solution to an integer solution and they
are covered in courses on approximation algorithms (e.g., [WS11; Vaz01]). We will
study a technique called randomized rounding.

In this chapter, we will use randomized rounding to obtain approximation algo-
rithms for max SAT (Section 6.1), set cover (Section 6.2), and CIPs (Section 6.3).

6.1 SAT

Recall the max-SAT problem from Chapter 1: given a boolean formula f(z1,...,z,)
in CNF, the goal is to find an assignment of zy,...,x, to {t,f} that satisfies the
maximum number of clauses. There we showed that a random assignment gives a
7/8-approximation for 3-SAT. Moreover the algorithm can be derandomized, and the
approximation factor is best possible unless P = NP.

More generally a random assignment gives a (1 — 27%) approximation for k-SAT,
for any k € N. The following table lists the approximation factors for the first few
values of k.

oblivious APX
1/2
3/4
7/8
15/16
31/32

Uk W N~/

k 1—1/2*

The approximation factor gets better and better as k increases. Meanwhile, the first
row — k = 1 — is rather embarrassing, since 1-SAT is trivial. 2-SAT is not as
trivial but there is a polynomial time algorithm for this problem as well. So oblivious
rounding is not so great for very small values of k.

This is relevant as we now consider the more general form of max-SAT, where we
are given a formula in CNF where each clause can have any number of clauses. We
can still apply our oblivious randomized algorithm that flips a coin for every variable.
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If every clause had at least k variables, then we obtain a 1 — 1/2% approximation ratio.
But the presence of single-variable clauses — which one might expect to cause the
least trouble — means we only have a 1/2-approximation ratio in general. We will
use linear programming to improve the approximation ratio.

An integer program for SAT. We first translate max-SAT to an integer program.
Fix a formula f(z1,...,z,) of n variables, consisting of m clauses C1,...,C,,. Let
OPT denote the maximum number of satisfiable clauses. Let “z; € C;” indicate
that the symbol z; appears in C; (without negation) and “z; € C;” indicate that z;
appears in Cj.

Consider now the following integer program.

maximize Yz over y € {0,1}", z € {0,1}"
i=1
s.t. Z y; + Z (1 —y;) > z for all clauses C;.

j:ijCi j:ijCi

The integer program has {0, 1}-variables for each variable z; and each clause C;, with
the following interpretations.

1. For j =1,...,n, let y; € {0,1} indicates whether we set z; =t (y; = 1) or
zj=f (y; =0).

2. For i = 1,...,m, let z; € {0,1} indicate whether we satisfy the ith clause
(zi =1) or not (z; = 0).

The integer program seeks to maximize the number of satisfied clauses, represented
by >, z;. For each clause C;, the corresponding constraint implies we can only set
z = 1if y; = 1 for some x; € C; or y; = 0 for some z; € C;.

A linear program for SAT. As discussed, while we cannot solve integer programs
in polynomial time, we can solve linear programs. We relax the integer program above
to a linear program by now allowing each variable y; or z; to lie anywhere in the
interval [0, 1].

maximize Zzz OVET Y1y vyYns 21y -+ Ym € R
i=1

st Y yi+ >, (1—y;) > z for all clauses C;

Jjix; €C; J:Z;€C;
0<z<lforali=1,...,m
0<y;<lforallj=1,...,n
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Let OPT,, denote the optimum value of the LP. Since the LP is a relaxation of the
IP above it, we have OPT,, > OPT.

Rounding the LP solution. Let y;,...,y, and z,..., 2, be an optimum solution
to the LP. We know that the objective value OPT, = }°, 2; is very good. Our goal
now is to convert the y;’s into discrete decisions while keeping the objective value as
close to OPT,; as possible.

The basic question is: how do we interpret a fractional value such as y; = .57
The LP seems to suggest that we should set x; to be one-half true and one-half false.
Of course the are no half values in boolean algebra and “one-half true and one-half
false” is total nonsense. A different interpretation is that of a randomized experiment
where we set x1 = t half the time, and x; = f the other half. Consider the following
randomized rounding algorithm:

Randomized rounding for SAT

1. Let y1,...,y, be an optimum solution to the LP for max-SAT.

2. For each variable z;, independently, randomly set z; = t with
probability y;, and z; = f otherwise.

Next we analyze the expected number of clauses satisfied by randomized rounding.
By linearity of expectation this boils down to analyzing the probability of satisfying
each individual clause.

Lemma 6.1. Fach clause C; is satisfied with probability at least (1 — 1/e)z;.

Proof. A clause C; is not satisfied iff we randomly set z; = f for all z; € C;, and set
x; =t for all z; € C;. Thus

P[C; not satisfied) = [ (1—v;) ] w-

Jjix; €C; Jj:z;eC;
Now, by the inequality 1+ x < e” (for all z), we can simply the RHS as

e Ej:zjeci yj+2j:ikeci(1_yj) < e Fi

Here the inequality follows from the LP constraint for C;. Finally, by convexity” of
f(z) =e™*, we have
e <(1—2)e +zeh =1~ (1—1/e)z,
as desired. n
2f(x) is convex if f(ta+ (1 —t)b) <tf(a)+ (1 —t)f(b) for all a,b and all t € [0, 1].
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By linearity of expectation, the expected number of clauses that are satisfied equals
the sum of probabilities of each clause being satisfied. Therefore, by Lemma 6.1, we
will satisfy at least (1 —1/e) OPT\;, > (1 — 1/e) OPT clauses in expectation.

Theorem 6.2. There is a (1 — 1/e)-approzimation algorithm for max-SAT.

Note that our bound is only interesting when there are clauses with one or two
variables; otherwise oblivious rounding is still better.

The best of both worlds. Part of the problem is that Lemma 6.1 is not tight
for small k. Take for example k& = 1. Obviously, if |C;| = 1, then C; is satisfied with
probability z;, not (1 —1/e)z;. For k = 2, we have the following better analysis.

Lemma 6.3. If |C;| = 2, then C; is satisfied with probability > 3z;/4.

Proof. Suppose for simplicity that C; = z1 V xo. (It will be obvious how to generalize
the analysis to other pairs of variables.) We have

P[C; not satisfied] = (1 —41)(1 — y2) @ ((1 — )+ (1 — y2)>2

- 2
2i\2 o) 02 2
= (1_5) = (1_Zj)<1_2) +Zj(1_2>
Zj 3
(a) is by AM-GM. (b) is by convexity of f(z) = (1 - %)2 O

Below we list the probability of clause being satisfied by the oblivious and LP
rounding strategies, as a function of the number of variables in the clause, k. Observe
that the average of the probabilities is at least (3/4)z; for all k, as indicated in the
column on the right.

k oblivious LP average
1 1/2 2 > (3/4)z;
2 3/4 3/4)z > (3/4)z
3 7/8 (1—-1/e)z; > (3/4)z
4 15/16  (1—1/e)z; > (3/4)z
5 31/32 (1—-1/e)z; > (3/4)z
Eo1—1/28 (1—1/e)z; > (3/4)z.
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The table suggests that we might be able to merge the oblivious sampling and LP
rounding algorithms to obtain a 3/4-approximation ratio. But the two approaches
seem like polar opposites: one approach is completely oblivious, and the other strongly
depends on the formula (implicitly via the LP solver). But here’s a trick: just pick
one of the two strategies uniformly at random. The “averaging” will work itself out
in the analysis.

Hybrid algorithm for maz-SAT.

1. With probability 1/2, return a uniformly random assignment.
2. Otherwise solve and randomly round the LP.

Theorem 6.4. The hybrid algorithm gives a (3/4)-approximation algorithm for maz-
SAT.

We leave the analysis to the reader as exercise C.40.

6.2 Set cover

In set cover, we are given m points [m| = {1,...,m}, and n sets Si,...,S, C [m].
The goal is to

find the minimum number of sets S;,, ..., S;, such that S U---US;, = [m].

Some natural extensions including adding costs for sets, pointwise demands that
require points to be covered by multiple sets, and coefficients A;; € [0, 1] that indicate
the amount of coverage a set .S; gives to point j. These will be considered when we
discuss CIPs later. Set Cover is NP-Hard. Instead we will design an approximation
algorithm for set cover, via randomized rounding.

We first write an LP relaxation for set cover. For each set S; we introduce a
variable z; that models our decision to take S; in our set cover. Consider the following
LP.

n
minimize ij over z € RY s.t. Z x; > 1 for all i € [m].
j=1 S;3i

The objective, 3-%_; x;, is the (fractional) number of sets in our (fractional) set cover.
For each point i € [m], we require at least one fractional set among the family of sets
that cover that point.
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Randomized rounding. Let us consider the following randomized rounding algo-
rithm

1. Let xq,...,2, be an optimum solution to the set cover LP.
2. For each set S, independently, take S; with probability z;.

Let ' C {Sy,..., S} be the random family of sets produced by randomized rounding.
We have two questions to address:

1. How big is F', relative to OPT?
2. Is F' a set cover?

For the first question, we have

E[|F|| = Y P[S; € F| = Y, = OPT,,.

which is very good indeed. Now, is F' a set cover? Fix a point ¢ € [m]. The expected
number of sets covering ¢ is

E[# sets in F covering i] = Y P[S; € F] =Y z; > 1.

S]'Bi SjBi

So i expects to have at least 1 set in F' containing it. But this does not imply that F
is a set cover — that F' covers all of [m] simultaneously — with any nonnegligible
probability. A better question is about the probability that F' covers i, or rather, the
probability that F' doesn’t cover 7. F' does not cover ¢ iff it fails to sample any of the
sets covering 7, hence

P[F doesn’t cover i] = [[ (1 —z;) <e 2os;i™ <e
NEY

So each point is covered with constant probability.
The question is: how do we increase the probability that all points are covered,
simultaneously?

Scaling and rounding. The problem above is that having each point covered with
constant probability does not imply that all points are covered with constant, or any
nonnegligible, probability. However, having each point covered with high probability
does imply, by the union bound, that all points are covered with high probability. Now,
how can we ensure that each point is covered with high probability? By scaling up x
before rounding.
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Randomized rounding for set cover.

1. Let x1,...,x, be an optimum solution to the set cover LP. Let a =
2log(m).
2. For each set S; independently, take S; with probability min{1, ax;}.

As before, let F' denote the random collection of sets returned by the algorithm.
Lemma 6.5. Each point i is covered with probability 1 — 1/m?.

Proof. If x; > 1/a for any set S; covering 4, then ¢ is covered deterministically.
Otherwise, by similar calculations as before, we have

P[F doesn’t cover i] = [[ (1 —axz;) <e 25,5 T <e ®=1/m? (6.2)

SEY
O
Lemma 6.6. F' is a set cover with probability at least 1 — 1/m.
Proof. By the union bound, we have
1
P[F is not a set cover] <> P[F doesn’t cover i| < —,
- m
as desired. O]

Theorem 6.7. Randomized rounding is a O(log m)-approzimation algorithm for set
cover.

Proof. We have E[|F|] = 2log(m)OPT, and by Markov’s inequality, |F| <
4log(m) OPT with probability 1/2. F' is also a set cover with probability 1 — 1/m.
By the union bound, with probability of error at most 1/2 + 1/m, F'is a set cover of
size at most 4log(m) OPT. O

6.3 Covering integer programs

We consider covering integer programs. They are discrete problems generalizing set
cover, of the form

minimize (c, z) over v € Z% s.t. Az > b.
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where ¢ € R%;, A € RZy™, and b € RZ,. The matrix notation expands out to the
following.
n
minimize Z CjT;
j=1

n
over T € Z%,

st. Y Ajz; > b for i € [ml.

=1

We assume without loss of generality that A;; < b; for all i. (Why?) We also assume

without loss of generality that m is at least some constant; say, 4. (Otherwise add a
few empty constraints.)

The algorithm we analyze is essentially the same as for set cover. We scale up =
by a O(log m) factor, and then randomly round each coordinate of x, independently,
to integer values.

1. Let a = 8log(m).
2. For each j € [n], independently, let

[ax;] with probability az; — |ax;],
zj =
J |lax;| otherwise.

The algorithm is very similar to set cover. However, the coefficients A;; make the
analysis more difficult. For set cover, we were able to give an exact formula for the
probability that a point ¢ is uncovered. (Equation (6.2).) Here it is not so simple, and
we instead appeal to the multiplicative (or relative) Chernoff bound introduced last
chapter. The proof is deferred to Section 6.A.

Theorem 6.8. Let X1,..., X, €0, 1] be independent random variables, and € € [0, 1].
o Forp > E[Xi + -+ X,

PIXi 4+ + X, > (L+ e < e r3,

o For u <E[X;+- -+ X,],

P[X;+ -+ X, <(1—eu] <e < r2

The main part of the analysis is to show that a single constraint is satisfied with
high probability, as follows.
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Lemma 6.9. The ith constraint is satisfied with probability at least 1 — 1/m?>.

Proof. By scaling, we may assume that b; < 1, hence A;; <1 for all j. We may assume
that >°; Aj;|ax;| < 1, since otherwise the constraint is satisfied deterministically.

For each coordinate j, let X; = A;;(z; — |ax;|) for each j. Let pp = E{ = Xj]
We have
p=>_ Aylaz; — laz;]) = a = > Aylaz;).
=1 =1

This implies that both

> a(l —ZAijLa:vjj), and g > o — 1> 8log(m).

j=1

We have

P|z fails constraint i | = P | > A;;2; < 1

=1
=P|>_ X;<1- ZAz‘jLMjJ}
=1 j=1
. p
<P|> X; <.
=1 @
By the Chernoff inequality, we have
PIS X, < P <otymine,
j=1 @
Now,
1 1\? 1 1\? o
—(1—— >—(1—— > — >21]
2( a),u_2< a)a_él_ og(m)
Thus
1
Pz fails constraint i| < e~ (1=1/e)%/2 < g=2In(m) —
m
as desired. [
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Theorem 6.10. With constant probablity, the randomized rounding algorithm returns
a feasible solution of cost at most O(In(m)) OPT ;.

Proof. By Markov’s inequality, we have

chzj <2E chzj] =2a OPT,;
J J

with probability of error at most 1/2. Each constraint ¢ is satisfied with probability
of error at most 1/m?.

By the union bound, the probability of z not being a feasible solution of cost at
most 20PT,, is at most

+

1
m’

N | —
N | —

1
5t P|z fails any constraint] < = + > P|z fails constraint ] <

as desired. [

6.4 Additional notes and materials

Lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2025 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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Spring 2023 lecture materials. Click on the links below for the following files:
o Handwritten .pdf prepared before the lecture (and .note file).
o Handwritten .pdf annotated during the presentation (and .note file).
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

6.5 Exercises

Exercise 6.1. Complete the proof of Theorem 6.4.

Exercise 6.2. Extend the approximation algorithm for set cover to positive costs.
For each set, there is a positive cost ¢; > 0. The goal is to compute the minimum
cost collection of sets that covers all the points.

Exercise 6.3. Design and analyze a deterministic 3/4-approximation algorithm for
max-SAT.?

Exercise 6.4. Consider an instance of (weighted) set cover defined by sets Sy, ..., S, C
[m] and costs ¢; > 0 for each set S;. The goal is to compute the minimum cost collection
of sets covering [m]. We saw that solving the LP and then randomly rounding gives a
O(log m) approximation. Here we consider a special case where all the sets are small
and obtain a better approximation factor by a standard extension of randomized
rounding called alterations.

Let A € N be such that |.S;| < A for all j. Consider the algorithm round-and-fix
for which some speudocode is given below. round-and-fix is similar to randomized
rounding and has two stages. The first stage solves the LP and then rounds the
solution scaled up by some factor o > 1. It is possible that some of the elements
i € [m] may not be covered. In the second stage, we fiz each uncovered element by
(deterministically) taking the cheapest set that covers it.

3You may first want to design and analyze a deterministic (1 — 1/e)-approximation algorithm for
max-SAT.
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round-and-fix(sets Si,...,S, C [m], costs c€ R%;, a>1)

1. let z € [0, 1]" solve the set cover LP

2. let F C{Sy,...,S,} sample each set S; independently with
probability min{1, az; }

3. for each i € [m)]

A. if ¢ is not covered by F
1. add the cheapest set covering i to F'

4. return F'

Show that for an appropriate choice of «, this algorithm returns a O(log A)
approximation to the set cover instance (in expectation). (It is possible to get
log A +log log A 4+ O(1) with care.)

Exercise 6.5. The defining characteristic of LPs is that the objective and all linear
constraints are given by linear functions. It is natural to generalize this notion and
consider mathematical programs where the objective and linear constraints are all
given by low-degree polynomials; say, bounded by a degree d. Let us call these “degree
d polynomial programs”. Linear programs are degree 1 polynomial programs.

Prove that degree d polynomial programs are NP-Hard to solve for d > 3. To this
end, pick a suitable NP-Hard problem, and design a degree 3 polynomial program
that can be rounded to a discrete solution without any loss.*

Exercise 6.6. For CIPs, we could assume without loss of generality that A;; < b;
for all 4,j. (In fact this assumption was critical for applying the Chernoff bound.)
Suppose now that we had AA;; < b; for all 7, j for a parameter 1 < A < log(n). Design
and analyzing a O(log(m)/\)-approximation algorithm for this setting.

Exercise 6.7. In CIPs we allowed each z; to be as large as we want. Suppose we
added the constraint z; < 1 for all j. Would the randomized rounding algorithm from
Section 6.3 still obtain a (1 — 1/e)-approximation ratio? Why or why not?

Exercise 6.8. Recall the set cover problem for which we obtained a randomized
O(log n)-approximation. Here we consider a (maximum weight) set packing problem,
defined as follows.

4Better yet, prove the same for d > 2.

110



6. Randomized Rounding Kent Quanrud
6.5. Exercises Fall 2025

Let [m] be a set of points, and let Si,...,S, C [m]| be n subsets of [m|. Let
bi,...,b, > 0 represent the profit of Si,...,.5,, respectively. We say that a collection
of sets F ={S},,...,95;,} is a set packing if they are all disjoint. The total profit of
such a set packing is defined as the sum of profits b;, + --- + b;, of the corresponding
sets.

The goal is to compute a set packing of maximum profit, but the problem is
NP-Hard. Here we consider the following (perhaps unusual) approximation criteria.
Let OPT denote the maximum profit of any set packing. For a > 1, we say that a
collection of sets S;, 4 --- + .5}, is an a-packing if each point is covered by at most a
sets 9;,. We say that a randomized collection of sets F is a randomized approzimate
a-packing if

1. The expected total profit of F is at least OPT.
2. With high probability, F is an a-packing.

Design and analyze a polynomial time algorithm that outputs a randomized
approximate a-packing for o as small as possible.”

Exercise 6.9. Our department has a large catalog of classes and a handful of course
requirements you have to satisfy to graduate. The requirements seem to be particularly
complicated for undergraduates. Each requirement is defined by a subset of classes
and a number specifying the number of courses you have to take from this subset.

Formally, let the courses be indexed 1 through n. We have L requirements
(S1,k1),...,(SL, kL), each consisting of a set .S; C [n] and an integer k; € N. For each
i, you have to take at least k; classes from S;. Let T C [n] be the set of classes you've
already taken. Let m = 37;|5;| denote the total size of all the sets.

Now we have two possible interpretations of the rules. In the first version, a single
class can only count towards a single requirement. In the second version, a single
class can count towards any number of requirements. For example, suppose you are
required to take (k; = 2) classes from S; = {A, B,C} and (ky = 2) classes from
Sy ={C, D, E}, and you have already taken T'= {B,C, D}. In the first version, you
do not have enough classes to graduate; in the second version, you do have enough
classes to graduate.

Here we have related but slightly different problems for the two systems.

®Here we are interested in the approximation factor a — the smaller and closer to 1 the better —
and not the exact polynomial running time.
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1. (5 points) Suppose a single class can only count towards a single requirement.
Consider the problem of deciding if you have already taken enough classes to
graduate. For this problem, either (a) design and analyze a polynomial time
algorithm (the faster the better), or (b) prove that a polynomial time algorithm
would imply a polynomial time algorithm for SAT.

2. (5 points) Now suppose a single class can count towards any number of require-
ments. Consider the problem of identifying the minimum number of additional
classes that need to be taken to satisfy all the requirements. For this problem,
either (a) design and analyze a polynomial time algorithm (the faster the better),
or (b) prove that a polynomial time algorithm would imply a polynomial time
algorithm for SAT.

6.A Proof of the multiplicative Chernoff bound
Theorem 6.8. Let X1,..., X, €0, 1] be independent random variables, and € € [0, 1].
o Forp>E[X;+---+X,],

PXi 4+ X, > (1+e)p] <e < H3

o Forp <E[X;+---+X,],

PIX)+ -+ X, <(1—e)p] <e“H2

Proof. We prove the claim for a slightly weaker constant in the exponent. Let ¢ € [0, 1]
be a parameter TBD. We have

]-3[)(1 + . + XTL Z (1 + G)ILL] e P|:et(X1+-.-+Xn) Z et(1+6)/‘:| S t(1+ )'u
e €

by (a) Markov’s inequality. Next analyze E[66X1+”'+X”] We first have

E|:€t(X1+"'+Xn):| _ ﬁ E[etX’}
i=1
by independendence of the X;’s. For each 7, we have

e ST X+ 22X <1+ (t+17) X,
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where we recall that 0 < ¢, X; < 1 and apply the inequality e* < 1+ z + 22 for z < 1.
Consequently

E{eth} < E[l + (t + t2>XZ} <1+ (t + t2> E[XZ] < e(t-i-t?)E[Xz‘]?

where the last inequality follows from 1 4 x < e* for all x. Now we have

n n

E[et(X1+“'+Xn):| < HE[etXZ} < HE[e(t+t2)E[X¢}} < e(t+t2)u’

hence
PXi+ - +X,>1+e)p < et u—t(+eu _ tlt—e)n
The RHS is minimized by setting t = ¢/2, giving e n/4,
The proof for the second inequality is similar and we provide a sketch highlighting
a differences. Let ¢t € (0,1] by a parameter TBD. We have

P[X1 44 X, < (1 _ G)M] _ P{e—t(XH-n-Xn) > 6—(1—6)15#}

< E{e—t(X1+~~~+Xn)]e(1—e)tu
Note the introduction of the negative sign to reverse the inequality before applying

Markov’s inequality. As before, we apply independence to break the expectation into
individual moments E[e‘tXl}, which are each bounded above by

Bfi¥] 51 (1 #2) i) = (080
where we applied the inequality e® < 1+ x + 2%/2 for # < 0. This leads to
P[X1 +o4+ X, < (1 _ 5)#] < e(t2/2—et),u;

The RHS is minimized by ¢ = ¢, giving the desired bound. O]
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Chapter 7

Online algorithms

7.1 Caching

GRS
=Y/iad L
hoxdl deve RAM U

At a very high level, a computer consists of memory holding data and a CPU that
computes the data. In one generic step, it loads a few bytes of data from memory
into the CPU registers, does some calculations on the registers, and writes the result
back into memory.

Memory is supplied by a series of devices with different tradeoffs between memory
size and latency. The biggest device is the hard disk, which can hold terabytes of
nonvolatile memory but is slow to read and write. Next we have RAM, which holds
gigabytes of volatile memory, and is much faster than the the hard drive. Finally the
CPU also has its own local (L; and Ls) cache, which holds at most a few megabytes
of memory, but is extremely fast to access due to its proximity to the CPU.

At the end of the day, the memory is backed by the hard disk, and the RAM and
local cache act as faster intermediate layers. When the CPU needs a piece of memory
x, it first checks the local cache. If the local cache does not have x, then it checks the
RAM. If z is not in RAM, then finally the computer retrieves = from disk. The RAM
and the cache are both populated with z as it travels from hard disk to CPU. In the
likely event that we read or write x again, it will already be cached in faster memory.

Hitting the hard disk throttles the computation. A good cache strategy tries to
maximize the odds of the requested data already sitting in fast memory, so we can
avoid hitting the disk. The main design decision is in choosing which data to evict
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from fast memory. In the example, when x was placed in memory, we needed to evict
another item y to make room for x. Different strategies for choosing y can make a
big difference in performance.

The model. We design and analyze cache strategies 4 2 3 o ¢
in the following simplified model. We assume there D JJ LD MDD > 00
are n pieces of data of identical size, and k cache slots
that can each hold one piece of data. In general, n is
much larger than k. The input is an online sequence 0O 00 ~~00
of data requests, in the form of indices out of [n].
Each request i is served from cache, so if 7 is not already in one of the k slots, then
we have to choose which of the £ slots to place it in. The general goal is to minimize
the number of cache misses.

A salient point is that the requests are made online: we have to choose which item
to evict without any knowledge of future requests.

The only design decision is in the eviction policy: when the requested data x is
not in cache, which item y should be evicted to make space for 7 Here are a few
approaches:

o Least frequently used (LFU): Evict the item y that has been accessed the fewest
number of times (since being put in cache).

o Least recently used (LRU): Evict the item y with the oldest time of last access.

o Not recently used (NRU), a.k.a. 1-bit LRU: Whenever an item is accessed, mark
it. Evict unmarked items. If all cache items are marked, then remove all marks
and try again.

LRU can be seen as a special case of NRU.

Competitive analysis. We typically analyze algorithms from a worst-case point of
view. For caching, the worst-case perspective would try to bound the total number
of cache misses. In the online model, however, the worst-case is unbounded: the
adversary can always request an item out of cache and force a cache miss.

So maybe there is no good cache strategy because the data requests are simply
impossible to cache. But if there is a good cache strategy, then we can find a comparably
good one? Suppose that for a fixed sequence of data requests iy, 19, -+ € N, it was
possible to have m cache misses in hindsight. Is it possible for us, operating online, to
also get m misses? 100m misses? mk misses? etc. In competitive analysis, we want
to minimize the competitive ratio,

it Ho & our misses
competitive ratio = ————
OPT misses
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where OPT is the minimum number of misses in hindsight.

Least frequently used (LFU). Least frequently used has an unbounded competi-
tive ratio. We leave the proof to the reader as an exercise.

Exercise 7.1. Prove that LFU has unbounded competitive ratio. (That is, for all
L > 0, give a sequence of requests for which LFU obtains a competitive ratio > L.)

Not-recently-used (NRU) and least-recently-used (LRU). Next we analyze
the not-recently-used and least-recently-used eviction strategies.

Theorem 7.1. NRU and LRU have competitive ratio at most k.

Proof. LRU is a special case of NRU, so we only need to prove the bound for NRU.
Consider a sequence of requests

Z'171-277/-37 e € [n]

We split the sequence whenever NRU resets of all of its marks. We call the contiguous
subsequence of requests between resets a run.

Each run has k distinct items. The first item after a run is distinct from the &
distinct items in the run. Thus: any eviction strategy must miss either (a) one of the
last k£ — 1 distinct requests of the run, or (b) the first item after the run. That is,
OPT makes at least 1 mistake per run.

On the other hand, NRU makes k mistakes per run. All put together, we have

# NRU misses - k(# runs)
# OPT misses — # runs

as desired. ]

:k:)

Randomized NRU. Lastly we consider a randomized variation of the NRU al-
gorithm. It starts from the NRU framework: marking items as they are accessed,
evicting unmarked items, and unmarking all items when all items are marked. The
key distinction is that when evicting an unmarked item, it chooses one uniformly at
random.

Theorem 7.2. Randomized NRU has competitive ratio at most 21In(k) in expectation.
Proof. As before, consider a sequence of requests
ila i27 i37 e € [n]a

and split the sequence into runs whenever all the marks are reset. There are k distinct
items per run. Of these k items we distinguish two types:
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1. “New” items that were not in the previous run.
2. “Repeat” items that were also in the previous run.

We define a potential function ® equal to the number of items that are in OPT’s
cache, but not in the NRU cache.

Fix a single run. Let & and ®qyr be the value of ® at the beginning and the end
of the run, respectively. Let ¢ be the number of new items in the run; that leaves
there are k — ¢ repeat items in the run.

Consider OPT. At the beginning of the run, out of £ new pages not in the NRU
cache, at most @, of them are in OPT’s cache. So OPT misses at least { — &,y new
pages.

Now consider ®qyr. Poyr is the number of items in OP'T’s cache but not in the
NRU cache at the end of the run. But the NRU cache is filled with the k items in the
run. So OPT must have kicked out these @,y items, and incurred @, cache misses,
during the run.

So OPT has at least ¢ — ®; misses, and at least ®,yr misses. Average these
together, and OPT has at least

g —"_ ®0UT - ®IN
2

misses in the run.

Now consider NRU. The NRU cache has ¢ cache misses for the ¢ new items.
Consider the repeat items, which occupy k — ¢ of the k slots, all unmarked, at the
beginning of the run. We claim that for i = 1,..., k — £, the ¢th repeat item is missed
with probability at most #f_l).

Consider the first repeat item. In the worst case, all £ new items come first, and
they evict £ of the k items uniformly at random. The first item is evicted, hence
missed, with probability ¢/k.

Now consider the ith repeat item. When this request arrives, the cache contains:

(a) (At most) £ new items, all marked.
(b) The first i — 1 repeat items, all marked.

(¢) k—{¢— (i—1) items out of the k — (¢ — 1) from the previous run that have not
appeared in this run, all unmarked.

Consider the unmarked items in the third category. Of the k — (i — 1) items from
the previous run that have not appeared in this run, exactly ¢ have been evicted. By
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symmetry, each has an equally likely chance of being evicted. This includes the ith
repeat item. Thus the ith repeat item has a ﬁ probability of being evicted, hence
missed, when it is requested.

By linearity of expectation,

E[# misses on repeats] = » P[missing on the ith repeat item]

To review, in a single run, OPT makes at least .5(¢ + ®oyr — P1y) mistakes, and
randomized NRU makes at most ¢In(k) mistakes in expectation.

Let L denote the total number of new items over the entire sequence. Over all the
requests, the number of OPT misses is at least L/2 plus half of the total change in .
Initially & = 0 and at the end it is nonnegative so the total change is nonnegative.
Thus OPT makes at least L/2 mistakes.

Meanwhile the randomized NRU has L In(k) cache misses in expectation. Thus
the expected competitive ratio is bounded by

Ln(k)
L2

E[competitive ratio] < = 21In(k),

as desired. O

7.2 Buy-or-rent

Someone without a car can use Lyft or Uber to get around. But after a lot of taxi
fares, buying a car becomes more appealing. Should you buy, or continue to rent?
It’s tricky because you don’t entirely know what the future holds.

Another example is with skis. The ski resort rents skis, but its not very cheap.
You can also buy skies, which is more expensive than renting, but could save you
money in the long run if you ski a lot. Should you rent or buy skis? (IMO its much
harder to project future ski use then car use.)

Decisions like this pop up all over a computer. Should you keep a hard drive
spinning when not in use? It takes a while to spin up a hard drive from rest. On the
other hand it takes energy to keep it spinning and ready. The right decision depends
on future data access patterns that you don’t know. Something similar can be said
for any component with a high startup cost.
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For fun we will frame the problem in terms of skis. Suppose it costs k dollars to
buy skis, and 1 dollar a day to rent skis. Let ¢ be the total number of days skied, in
hindsight. The tricky part is that we don’t know ¢. Every day we decide to buy or
rent skis, not knowing if we will ever ski again.

If we knew /¢, the decision would be trivial:

1. If £ <k, then rent every day.
2. If £ > k, then buy on the first day.

Thus OPT = min{k, ¢} in hindsight. Our goal is to develop an online strategy
competitive with OPT.
As a warmup, we challenge the reader to think of a 2-competitive algorithm.

Exercise 7.2. Design and analyze an online, (2 — o(1))-competitive algorithm for the
ski-rental problem on the preceding page.

In fact 2 is optimal for deterministic algorithms:

Exercise 7.3. Prove that 2—o0(1) is the optimal competitive ratio for any deterministic
algorithm for the ski-rental problem on the previous page.

Half-skis. As a thought experiment, supposed we relaxed the rules so that
you could buy one ski at a time for k/2 dollars, and rent 1 ski at a time
for 1/2 dollars. (You still need 2 skis each day). Note that the offline op-
timal strategy does not change: you should buy or rent (both) depending on
if ¢ > k or not. Thus OPT = min{k,¢}. But here one can get a com-
petitive ratio better than 2. Let us assume k is divisible by 8 for simplicity.

1. On day 5k/8, buy one ski. 0\°\ll)’k

2. On day k, buy a second ski. Sk

doy %

For ¢ < 5k/8, we are optimal since we are only renting. For ¢ = 5k/8, we pay

5k k9% 9

— 4+ —-=—=-0PT.

8+2 8 5
For ¢ = k, we pay

bk 13k 29 29
— 4+ = = —k < —O0OPT.
8+28+k 16]{;_16O
For ¢ in between 5k/8 and k, the competitive ratio is only better than at 5k/8 or at k.
The takeaway is that operating “fractionally” — here we allow for “half” purchases

— leads to a better ratio.
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Liquid skis. Suppose we pushed the thought experiment

further and allowed you to buy or rent arbitrary fractions Tx,
of a pair of skis. For each day i, let x; denote the fractional 7
skis bought on day 7. Let y; be the fractional skis rented

on day i. We require 1 total ski on each day :

r1+ -4 x;+y; > 1forall i € [f]
Our goal is to minimize the total cost,
k(zy+ - +x) +y + -+ e

Observe that the optimum policy in hindsight is the same, hence OPT = min{k, (}.
Here we will analyze the following heuristic. Let 6 > 0 be a parameter TBD.
Suppose we commit to spending 1 4 ¢ units per day until we’ve completely bought

the skis. Note that y; =1 — 2y — --- — 2; so x; determines y;. For day 1,
l+d=kn+(1—n) = xl:kil
For day 2,
l+d=kro+(1—21 —29) = xgzkil(é—i—xl).
In general, on the ith day,
l+d=ke;+(1—2y— -+ —2y) = xi:kil(5+x1+~~+xil).

For the first k& days, OPT pays 1 dollar per day, while we pay . So for ¢ < k, we
have a competitive ratio of 1+ . We now choose ¢ to ensure we own a full set of skis
after k days, which guarantees that the competitive ratio is 1 + ¢ for all /. We have

e g () (i) o () )
() - ()

Rearranging, we have
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and

1
lim 0 = 1 ~ .O82.

k—o0 e —
Thus the competitive ratio 1 4§ converges to —= ~ 1.582.

Random skis. Our improved competitive ratio is artificial since of course we
cannot buy skis in arbitrary fractions. We convert the continuous strategy above to
a fractional one by randomized rounding. The high-level idea is that we commit to
buying in one of the first k days, and for i € [k], interpret x; as the probability of
buying skis on day 7. This can be implemented by as follows.

1. Pick a € [0, 1] uniformly at random.
2. Simulate the fractional algorithm, giving values x1, zo, - - - € [0, 1].
3. Onday ¢, it 2y 4+ --- + x; > «, buy skis.

The expected cost from buying skis is

¢
E[cost buying] = kY P[buy on day | = k(z1 + - -+ + x).

=1

The probability we rent on day i is
Plrent on day i] =Pla >z + -+l =1—21 — - — 2, = y;.

Thus the expected cost from renting is

¢
E[cost renting] = Y~ P[rent on day ] = y1 + - + ys.
i=1

Thus the total expected cost is
E|[cost] = E[cost buying] + E[cost renting]
:k(x1+...+x€)+y1+...+yé’
the same cost as our (impractical) fractional solution! Thus we have the same
competitive ratio in expectation:

k—00 €

E[competitive ratio] =146

e—1
In conclusion:
Theorem 7.3. There is randomized algorithm for the ski-rental problem with compet-

itive ratio converging to -5 for large k.
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7.3 Additional notes and materials

The analysis of deterministic NRU/LRU is from [ST85a]. The randomized NRU
algorithm is from [FKL+91]. Additional notes on caching can be found in [Blu00]
and [MR95, Chapter 13]. The buy-or-rent algorithm is from [KKMM-+94].

Lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

7.4 Exercises

Exercise 7.1. Prove that LFU has unbounded competitive ratio. (That is, for all
L > 0, give a sequence of requests for which LFU obtains a competitive ratio > L.)

Exercise 7.2. Design and analyze an online, (2 — o(1))-competitive algorithm for the
ski-rental problem on page 118.

Exercise 7.3. Prove that 2—o0(1) is the optimal competitive ratio for any deterministic
algorithm for the ski-rental problem on page 118.

Exercise 7.4. Let ¢ < k. Prove that an LRU cache of size k is k/(k+1—¢)-competitive
with any cache of size /.

That means, for example, that an LRU cache of size k is 2-competive with any
cache of size k/2. Some people find this bound more compelling.

You should be able to prove this by a short modification of the argument of the
k-competitive bound. It suffices to point out which part of the argument should
change, and how.
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Exercise 7.5. Suppose you are going to the graduate student social thingy on the
3rd floor of Lawson.! You can get to the third floor by either an elevator or the stairs.
The elevator takes 15 seconds (once you get in), while the stairs take 2 minutes. Your
goal is to get up to the third floor as fast as possible before the donuts are all taken.

You press the button to go up for the elevator. You don’t know how long it will
take to come down. Do you wait or take the stairs?

1. Suppose you knew how long the elevator would take to arrive. What is the
optimal choice, based on this wait?

2. Now suppose you don’t know how long the elevator would take. Design a
deterministic algorithm that is (15/8)-competitive with the optimal solution
(where you know how long the elevator would take).

3. Suppose you have a quarter in your pocket, which lands heads or tails with equal
probability. You can toss the coin once every 15 seconds. Design a randomized
algorithm with a (slightly) better competitive ratio than the (best) deterministic
one from the previous question.?

YTt used to be on the third floor.)
2T actually don’t know what the best competitive ratio would be, and I'm interested to see what
everyone comes up with.

123



Chapter 8

Distinct elements and moment estimation

Let ey, ..., e, € [n] be a sequence of elements from an universe of n possible elements.
For each element ¢ € [n], let f; = [{j : e; = i}| denote the frequency of element i. For
k € Z>p, the kth moment is the sum Fj, defined by

n

Fr=>" £

=1

For example, the zeroth moment,
Fo=) fi={i:fi>0}
i=1

counts the number of distinct elements in the sequence. The number of distinct

elements of course has numerous applications; for example, Google analytics tracks

the number of distinct visitors to each website [HNH13]. In databases, quick estimates

of the number of distinct elements are used to optimize complex queries [HNS+95].
The second moment,

F2 = Zf;
=1

is called the “repeat rate” or “Gini’s index of homogeneity” and is used to compute
the surpise index [Goo89]. In general, frequency moments Fj, for k > 2 reflect the
skew of the data, which (for example) is used by databases to select data partitioning
schemes (cf. [Yua92]).

Clearly moment estimation is easy to do in O(n) space, since we can count each
fi explicitly. Here, in the same spirit as in the heavy hitters problem (Chapter 2), we
are interested sublinear-space algorithms, processing the elements ey, ..., e, online.
As before, we assume the stream is generated adversarially.
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We discuss algorithms for Fjy and F5 in Section 8.1 and Section 8.2, respectively.
An estimator for F}, is described in exercise C.17.

For simplicity, we assume that n and m are within a polynomial factor of each
other, so that 1/poly(n) represents a high-probability bound over both the total
number of elements, and the length of the stream.

8.1 Fj: Distinct elements

Consider the problem of estimating the number of distinct elements, Fj, in the stream.
Of course this is easy in O(n) space by explicitly maintaining the set of all distinct
elements. But in sublinear space we cannot store the identify of all the distinct
elements when we’ve seen. When the next element comes in, how do we know if it is
new? Any ideas?

Suppose we had a subroutine that, given a parameter p € [0, 1], maintained a
random sample B including each distinct element independently with probability
p. Then E[|B|] = pFy, making |B|/p an unbiased estimate for \. |B| is also a sum
of independent random {0, 1}-variables indicating whether each distinct element is
sampled. Thus, if E[|B|] = pFy is at least Q(log(n)/€?), then |B|/p is a (1 +¢)-
approximation of Fj with high probability.

(Indeed, for each element 7, let X; = 1 if ¢ is sampled, and 0 otherwise. We have
E[X;] = 1 for each distinct element i, hence |B| = E[>_" ; X;| = pFy. The Chernoff
bound states that P[||B| — pFy| > epFy] < 6_9(621’%).)

For example, if p satisfies

C'log(n) < pF < 2C'log(n)

> Pplo >

€2 €2

for a sufficiently large constant C, then (1 —¢€)Fy < |B|/p < (1 + €)Fy with high
probability. Moreover, |B| < (1 + O(¢))pFy < O(log(n)/€?), satisfying our low-space
requirements.

To actually implement this strategy we have two challenges to address:

1. Given a probability p, how can we maintain a sample B where each distinct
element is sampled with probability p, online and in low-space?

2. How can we choose the right value p — big enough that |B|/p is a good estimate
with high probability, but small enough that |B] isn’t too large?

Consider the first task. Imagine stepping through the stream one element at a time.
The first element e; certainly should be sampled and added to B with probability p.
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What about the second element ey? If ey is different from e;, then e; should also be
added to B with probability p. What if e is the same as e;? We should skip it, since
we already tried sampling that element with probability p.
But it’s not so simple. In later iterations ¢, we wouldn’t know if we already tried
to sample e; in a previous iteration, unless it was actually sampled and placed in B.
Any other ideas?

Here’s the twist: on the ith element e;, we can invalidate any previous attempt to
sample e; by removing it from B if it is already in B. Then B samples every distinct
element except e; with probability p. Now sample e; and add it to B with probability
p. In effect, B is sampling the last instance of each distinct element independently
with probability p. See Fig. 8.1 for pseudocode.

We now know how to maintain a random sample B of each distinct element with
probability p. The only problem now is that we need the right value p (up to a
constant factor), inversely proportional to Fy, so that |B| is large enough to provide a
reliable estimate, but small enough to have a good space bound. Any ideas?

Let 7 = C'log(n)/€e? for a sufficiently large constant C'. Initially, we start with
p = 1, and maintain the set of distinct elements explicitly in a buffer B until |B| > 7.
Then we set p = 1/2, and drop every element in B independently with probability
1/2. Continuing in this fashion, every time we reach |B| > 7, we divide p in half and
drop each element in B. By randomly dropping elements from B in lockstep with
decreases to p, we maintain the invariant that B samples every distinct element with
probability p. In particular, |B|/p always estimates the number of distinct elements.
See Fig. 8.2 for pseudocode.

distinct-sample(p)
1. Let B=10

/% |B|/p is our estimate for the number of distinct elements. */

2. For each element ¢; (fori=1,2,...):

A. If ¢; € B then remove e; from B.
B. With probability p, add e; to B.

Figure 8.1: Maintaining an independent sample of each distinct element with probability p.
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To analyze this algorithm, one can reimagine it as the following equivalent process.
For each j € {0,..., [logn]}, let B; maintain a random sample where each distinct
element is sampled with probability 1/2/. We correlate the samples B; across j by
imagining, for each element e; in the stream, drawing a random number 6; € [0, 1],
and adding e; to B; if 6; < 1/27.

Consider the probability p and buffer B in our actual algorithm at any fixed point
in the stream. In terms of the virtual buffers B;, we have B = B; and p = p; for the
first index j where |B;| < 7 all throughout the stream.

We claim that with high probability, for all indices 7 and all points in the stream:

(a) If ngO Z T/4, then (1 — E)FO S ’BJ’/pJ S (1 + E)Fo.
(b) If |Bj| > 7, then p;Fy > 7/2.

Suppose these properties held and fix any point in the stream. The second property
implies that p = p; for an index j such that p;Fy > 7/4 (since |B;_;| > 7 at some
point in the stream). The first property then implies that Fy/p = Fy/p; is an
(1 £ €)-estimate of Fy, as desired.

[t remains to prove properties (a) and (b). Property (a) is a direct application of
the Chernoff bound. Property (b) is the contrapositive of Chernoff bound. Indeed,
suppose p;Fy < 7/2. Let k be the largest index with p,Fy < 7/2. We have 7/4 <
E[By] = piFo < 7/2. Since B; C By, we have

P[|B;| > 7] < P[|By| > 7] < P[|Bi| > 2p Fy] < e @) =1/ poly(n).

By the union bound, with high probability, |B;| < 7 for all j whenever p,;Fy < 7/2.
This implies property (b) and completes our analysis.

Theorem 8.1. The algorithm distinct-elements maintains a (1 + €)-approzimation
to the number of distinct elements with high probability in O(log(n)/€e?), assuming
each element can be stored in O(1) space.
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distinct-elements(n,e¢)

1. Set p=1, B=0, and 7 = C'log(n) /e for a sufficiently large constant C.
/* |B|/p is our estimate for the number of distinct elements. */
2. For each element e; (for 1 = 1,2,...):

A. If e; € B then remove e; from B.
B. With probability p, add e; to B.
C. If |[B| >

1. p<« p/2.
2. Drop each element in B independently with probability 1/2.

Figure 8.2: A randomized streaming algorithm estimating the number of distinct elements.

8.2 F5 estimation

We now shift to esimating the second moment, Fy, = > | f2. Any ideas?

Let h: [n] = {—1,1} be a k-wise independent hash function assigning a random
sign to each elements for a parameter k& TBD. (Let’s imagine h is an ideal hash
function for now, and reverse engineer the right value of k afterwards.) Consider the
estimate

Y? where Y < > h(i)f,
i=1
Its easy to maintain Y in an online and small space fashion, simply adding h(e;) to
Y for each item e;.
We start with the expected value of Y2. We have

n

[Yﬂ QZZR:E foJ

:znjE[h ]f2+ZZE DIfifs
i=1 i=1j=i+1

where (a) is by linearity of expectation. For the first sum, we have
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because h(i)? = 1 (always). For the second sum, we have

> > ERGG)ff; =0
i=1 j=it+1
because

E[n(i)h(7)] = E[h(@)] E[r(j)] = 0

by pairwise independence. Thus E[Y?] = I}, and Y? is an unbiased estimate of F.
The fact that Y? is unbiased is a nice first step, but how reliable is the estimate?
How much does it deviate from its mean?
For a random variable X, the variance of X, denoted Var|X], is the expected
squared difference between X and its mean:

Var[X] # E[(X - E[X])*].
It is not difficult to show that
Var[X] = E[X?] - E[X]’

(see exercise C.13).
Consider the variance of our unbiased estimate Y?2. We have

var[y?] = E[v*] - E[y?]" = E[y'] - F2.

By linearity of expectation,

BE)Y'=E

@h(z’)ﬁ) ] = S ERGRGARROLL S e

2,9,k 0=1

Assume for simplicity that A is an ideal hash function, and consider an individual
summand E[h(2)h(j)h(k)R(0)] fi fj fxfe. The indices i, j, k, ¢ may or may not be distinct.
Suppose first that i, j, k, £ are all distinct. Then

E[h()h(7)h(k)h(0)] = E[h(@)] E[h(5)] E[A(k)] E[A(f)] = 0.

More generally, if any index appears as an odd power, then the product of hashed
values is again negative. For example, if ¢ was distinct and j, k, £ have the same value,
likei=1and j =k =/ =2, then

E[h()h*()] = EBlh@) E[2*(j)] =0.
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Similarly, if we have three distinct indices, like i = 1, j = 2, and k = ¢ = 3, then
B |h()h(j)h* (k)| = B[R] B[R()] B[ (k)] = 0.

The only nonzero terms are those where each index appears as an even power.
Here we have two types. The first is when all the indices are identical. We have

E[n'(i)] ! = f

since h*(i) = 1. The second case is where we have two distinct indices, squared. We
have

E[W* W) £21] = fif},

and each pair of indices appears (;1) = 6 times.
Coming back to E[Y*], we now have

n n 2
B! =Y 1 +6X f1f] < <\/§Zf3> — 3F2.
=1

i<j i=1
Altogether, we have
Var|Y?| = 3F] — F} = 2F.

So the variance of our unbiased estimator Y3 is twice the square of its expected value,
F2. This is assuming that A is an ideal hash-function. Looking back, it is clear that
4-wise independent hash functions suffice.

How does the variance relate to the absolute deviation, |Y;? — F3|? For a > 1, we
have

Var[Y?]
a?F}

2
?.

(b)

PV - B > aR| P[(Y? - B)* > o’ F}| < < (8.1)
where (b) applies Markov’s inequality to the squared deviation (Y2 — Fy)2.

For o = 2, this inequality says that we have a factor 2 approximation with

probability 1/2. But what if we wanted a more accurate estimate, like 10% error?

The inequality gives us nothing for values of a@ < v/2. But consider the penultimate

inequality:

Var[Y?]

PHY2 - FZ‘ > aFQ} < T
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The more general inequality,

Var[X]
A2

is called Chebyshev’s inequality, follows from the same derivation as (8.1), and bounds
the consistency of a random variable by its variance. For example, if we wanted a
(1 + e)-approximation with constant probability, then Chebyshev’s inequality says we
need to take the variance down from 2F7 to eF7. How can we reduce the variance of
our estimate Y27

PIX - E[X][> ] <

Take the average. In general, given a random variable X, suppose we made k
independent copies Xi,..., Xy of X. Consider their average. It is not difficult to
show that

Varl ZX] - Var[X].

(See exercise C.39.) Thus, if we made k independent copies Y, ..., Y;? of our estimate
Y2, and took their average Z, we have

1 2
Var[Z] = - Var V2] = mat

In particular, for k = 4/€%, we have Var[Z] < ¢?F}/2, and Chebyshev’s inequality
gives us

<1/2. (8.2)

We now have an unbiased estimator that obtains a (1 £ €)-approximation with
constant probability, by taking the average of O(1/¢) copies of our initial estimator
Y2, What if we wanted to reduce the probability of error to a prescribed value 67 We
could take the O(1/§¢?) random variables instead, and the calculations in (8.2) would
give probability of error § instead of 1/2. But what about the high-probability regime
of 6 = 1/poly(n)? Making poly(n) copies kills the entire space-spacing enterprise.
The real question is: can we amplify better than averaging?

Let Z be the average of 4/¢ independent copies of Y?. Then |Z — Fy| < eF, with
probability (at least) 3/4. Let Zi,...,Z; be ¢ independent copies of Z. We expect
at least 3/4 of the Z;’s to be (1 + €)-approximations, and at most 1/4 of the Z;’s to
not. Now, the Chernoff bound implies that at most 1/2 of the Z,’s are correct with
probability exponentially small in /.
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(Indeed, if we define random variables X, ..., Xy, where X; = 1if |Y; — eFy| > €F%
and X; = 0 otherwise, then X7,..., X, are independent {0, 1} random variables with
S¢_, Xi < £/4. Chernoff’s bound now gives E[Zle X; > 6/2} < e 2)

Set ¢ = O(log(1/9)). With probability 1 — ¢, at least half of the estimators Z; are
(1 + e)-approximations. Now, how can we extract an (1 & ¢)-approximation out of
Z1, ..., 2y, assuming half of them are (1 + €)-approximations?

Take the median. If half the Z;’s are correct, then their median is correct. (Less
than half are too big, so the median isn’t too big. Less than half are too small, so the
median isn’t too small.) Taking the median of O(log(1/d)) estimates, each of which
are the average of O(1/€?) counters, we obtain the following theorem.

Theorem 8.2. One can compute an (1 % €)-approximation of the second moment Fy
with probability 1 — § in O(log(1/68)/€*) space assuming O(1) space for each counter.

The median-of-means trick. The F), estimator illustrates a more general amplifi-
cation technique. In the general setting, we have an unbiased estimator X of some
value p, and the goal is to obtain and (1 + €)-approximation with probability 1 — .
We amplify over two steps:

1. Let Y be the average of enough independent copies of X so that YV is a (1 £ ¢€)-
approximation with probability strictly greater than 1/2. (E.g., with probability

3/4.)
2. Take the median of O(log(1/6)) independent copies of of Y. With probability 1 — 4,
at least half the copies of Y are (1 £ €)-approximations, hence so is the median.

This “median-of-means” can be much more efficient then just taking the average of
many independent copies of X.

Note that the median of means may be a biased estimator, even though it is very
accurate with high probability.

8.3 Additional notes and materials

The Fj estimate in Section 8.1 is relatively recent and was given in [CVM22]. See also
[Knu23]. The Fy and F}, estimates are from [AMS99]. [AMS99] also included a different
estimator for Fy. [AMS99] first appeared in 1996, and the techniques (sketching,
median trick) and themes (randomization, low-space) had a strong influence on the
subsequent literature of “big-data” streaming algorithms.
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Lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

8.4 Exercises

Exercise 8.1. Prove that Var[X] = E[X?] — E[X]".

Exercise 8.2. Prove that given k independent copies Xj, ..., X, of the same random
variable X,

L 1
Var| =Y X;| = - Var[X].
k&= k

Exercise 8.3. Consider the special case of the distinct elements streaming problem
where there are n + 1 total items in a stream, each of which is one of n different
possible items {1,...,n}. Show that any algorithm that maintains the number of
distinct elements exactly throughout the stream has to use at least n bits of memory.

Exercise 8.4. A funny characteristic of the distinct elements estimator in Section 8.1
is that it is not monotone — |B| can go down when the next element e; kicks out
a previously sampled copy of the same element — even though the true number of
distinct elements is nondecreasing.

Design and analyze a streaming algorithm with the same performance as the distinct
elements algorithm, with the additional property that the estimate is nondecreasing.

Exercise 8.5. We consider the problems of estimating the mean and the median of a
stream of numbers. The input consists of a stream of integers x1, xs, ..., presented
one at a time, of unknown length m. Your algorithms should use sublinear space
and return (1 £ €)-approximations (as defined below) of the desired statistics with
probability at least 1 — 4.

We expect you to analyze the space, the running time, and the probability of
outputting an accurate solution. The smaller the space, and in general the lower
the dependency on € and §, the better. For simplicity you can assume it takes O(1)
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space to store a number and it takes constant time for basic operations like adding,
subtracting, and multiplying numbers."

It may be helpful to be aware of a streaming algorithm called reservoir sampling
that maintains a sample of 1 element drawn uniformly at random from the stream.
This algorithm is easy to describe. It takes the first element deterministically. For
i > 1, with probability 1/1, it takes the ith element and replaces the element previously
held by the algorithm. It is known (and you can assume as fact) that at any point
in time, the element held by the algorithm represents an element sampled uniformly
at random from the stream. Note that for any k& € N, one can maintain a random
sample of k elements with repetition from the stream by running k copies of the
single-element reservoir sampling algorithm in parallel.

The two statistics we are interested in are defined as follows. Let d,¢ € (0,1) be
fixed.

1. (2 points) A (1 % ¢)-approximation of the mean of the stream with probability
at least 1 — ¢. That is, if the mean is x, then you should return a value y in the
interval (1 —e)z <y < (1+ €.

2. (8 points) A rank-wise (1 + €)-approximation of the median number in the
stream with probability at least 1 — §. That is, if the stream has m total
numbers, then you should return an element whose rank r is in the interval
(1= m/2] <r < [(1+m/2]2

Exercise 8.6. Recall that in the heavy hitters problem, the goal was to estimate the
absolute frequency of each element (in [n]) up to an additive error of em, where m is
the total length of the stream. Another way to frame this to first let x € R™ denote
the frequency vector; that is, x; is the absolute frequency of element 7, and ||z||, = m.
We can think of count-min as estimating each coordinate x; with (one-sided) additive
error of €| z|];.

In this problem we do something similar except with respect to the fo-norm. The
goal is to estimate each coordinate x; up to an additive error of +e||z|,, and holds
for real-valued = € R™ (unlike count-min, which only holds for nonnegative vectors).
Formally, we start with the all-zero vector & = 0". The stream presents data of the
form (i, A), where i € [n] and A € R, which indicates the update z; < x; + A. We
want a data structure that can estimate each coordinate x; up to =el|z||, with high
probability, in sublinear space.

LOf course you are not allowed to abuse this with something bizarre like using a polynomial-bit
integer as a bit map. This isn’t battlecode.
2An element has rank i if it is the ith smallest element.
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Below we describe a data structure that can get +e¢||z||, error for an appropriate
choice of parameters. (This is like describing one “row” of the count-min data
structure.) You will first be asked to choose the parameters and prove the error
guarantee. Then you will be asked to amplify the data structure to obtain a high
probability guarantee.

The data structure is as follows. Let € > 0 be given, let w € N be a parameter
TBD, and let A[l..w]| be an array of values initially set to 0. Let h : [n] — [w] be
a pairwise independent hash function. Let g : [n] — {—1,1} be a second pairwise
independent hash function. The operations are as follows.

o For each update (i, A) presented by the stream, we set A[h(i)] = A[h(i)]+ g(i)A.
« To retrieve an estimate for coordinate i, we return g(z)A[h(7)].
We now analyze this approach, as follows.

1. Foreach i, let y; = g(i)A[h(7)] denote the estimate returned by the data structure.
Prove that y; is an unbiased of z; for each i. (That is, E[y;] = x; for all i.)

2. What is the variance of y; (as a function of w)?

3. Prove that for an appropriate choice of w, the probability that |z; — v;| > €|z,
is at most 1/10. (w should depend on ¢, and in general, the smaller the choice
of w, the better. The choice of 1/10 is arbitrary; any probability less than 1/2
would suffice.)

4. Using the data structure designed above, design and analyze a data structure
that, in O(log(n)/€?) space, estimates each coordinate of x up to an additive error
of £e||z||, with high probability. (Le., probability of error at most 1/ poly(n).)

Exercise 8.7. This exercise is about estimating F}, for £ > 2 with sublinear space
as the elements are presenting in a stream (as described in the introduction). Let
g(z) = ¥ for fixed . Then F), = ¥, g(f;), where f; is the frequency of item i. We
break down the design and analysis of such an estimator into steps below, but you
are encouraged to try to design one yourself first.

For each element e € [n], and each index in the stream i € [m], let f{%) be the
frequency of element ¢ after ith iterations. Consider the random variable Y defined by

Y Em(g(f — 10) = o(£5" — £~ 1))
where i € [m] is drawn uniformly at random.
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1. How can you implement Y in a streaming fashion? (In a stream, you don’t
know m).?

2. Prove that Y is an unbiased estimator for Fj,.
3. Prove that the variance of Y is at most kn!~V/*F2.*

4. Using Y, design and analyze a streaming algorithm that computes a (1 + €)-
approximation for F} with probability 1 — ¢, for given parameters € and 9. In
addition to the correctness, analyze the time and space of your algorithm.

Exercise 8.8. You run a double-secret laboratory and for your experiments you
need to monitor the temperature of the lab very carefully. To this end you can
buy thermostats 7i,...,T; that purport to measure the temperature p, but the
thermostats are imperfect. You have the following facts.

1. Given the actual temperature p of the lab, the thermostat readings 7; are
independent.

2. Each thermostat is calibrated so that its expected value E[T;] equals the actual
temperature p of the lab.

3. For each thermostat T}, the variance Var|T;] of the thermostat is 0% for a known
parameter o > 0.

Given parameters €,d € (0,1), the goal is to be able to measure the temperature
of the room with additive error at most € with probability at least 1 — d. Describe
and analyze a system that, using as few thermostats as possible’, obtains additive
error € with probability at least 1 — §.

3Hint: Exercise 2.5.

4Hint: This is a bit messy. One approach is to first show that Var[Y] < kFy Fa,—1, and then
bound Fy Fpy,_y < n'~VFF2.

Sup to constant factors independent of €, §, and o
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Chapter 9

Dimensionality Reduction

9.1 Large data sets and long vectors

Big data, big data, big data. What’s so big about it? There are at least two dimensions
to be aware of. First, there is a huge number of “pieces” of data being collected. For
example, in the heavy hitters problem, we might have a piece of data for every search
query ever made. A second dimension that we have not yet confronted is the “size’
or “width” of each piece of data. Here we will consider data where each piece of data
is a high-dimensional array of real values; i.e., points in R? for d very large.
High-dimensional vectors arise naturally. Every graph is associated with a square
adjacency matriz whose dimensions are proportional to the number of vertices, n.
Thus every row is an n-dimensional vector. The world wide web and social networks
are by now extremely large graphs where the corresponding vectors have very high
dimension. In text processing, text is sometimes represented as a “bag-of-words”,
where one counts the frequency of each word. This can be encoded as a feature vector
whose dimensionality is proportional to the size of the English language! (Plus typos.)
To take this further, more aggressive algorithms use phrases — sequences of (say)
3 consecutive words — rather than words, and run algorithms on “bag-of-phrases”
vectors. These vectors have dimension proportional to the size of the English language,
cubed! A recent technique from machine learning, called autoencoders, first trains a
large model (such as a neural network) on some large collection of data. For each
piece of data, the internal state of the model when labeling that data is ultimately a
high dimensional vector. It has been observed that these high-dimensional vectors can
have useful geometries; e.g., in the word2vec tool for word embeddings [MSC+13].
We note that in some of the examples above, the data vectors are typically sparse
with few nonzero entries. Such vectors can be represented more compactly as an
“adjacency list”, where we list the index and the value of only the nonzero entries
in the vector. The trouble arises when we start running computations over them.
When we start combining these vectors in some linear algebraic procedure, the vectors

)
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rapidly become dense, and this is where we pay for the high dimensions.

Most operations with vectors take time proportional to the number of dimensions
(in the worst and dense case). Certainly it would be desirable for the data to live in a
much lower dimensional space. The goal in this discussion is to develop some techniques
for transforming high-dimensional data into lower-dimensional data. We first note
that for many applications, we do not necessarily require the exact coordinates of the
vector. Given a set P of points in a high-dimensional space d, we may only actually
need the following:

1. For a given point x € P, the (Euclidean) length of x, ||z|| = \/>; 2.
2. For any two points z,y € P, the Euclidean distance ||x — y|| between them.
3. For any two points z,y € P, the dot product (z,y) between z and y.

Moreover, for many applications, approximations to the above quantities may suffice
to produce approximation algorithms for the given context.
We now introduce the main result of this chapter.

Theorem 9.1 (Johnson and Lindenstrauss [J1.84]). Let P C R be a collection of n
points in R?, and let k = O(log(n)/e?). Let A € N**¢ be a k x d randomized matriz
where each coordinate is sampled as an independent Gaussian. Consider the randomly
constructed linear map f : R — R* defined by

f(z) = ﬁ
Then with probability of error < 1/poly(n), we have
(L=e)llzll < f (@)l < 1+ e)|z]]
forallx € P, and
(L=ellz =yl <|[f(z) = FWI < A+ e)llz -yl
for all pairs x,y € RY.

This is a remarkable theorem. Theorem 9.1 says that, for the sake of preserving
distances, one can always reduce the dimension to about log(n), where n is the number
of input points. This bound is entirely independent of the input dimension. The input
dimension could be as large as one could possibly imagine; the output dimension will
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always be a logarithmic function of the number of points. The construction, moreover,
is oblivious to the input.

Perhaps even more remarkable is how obvious this mapping is after some ac-
quaintance with Gaussian variables and their extremely convenient properties. The
ideas underlying Theorem 9.1 lead to many other practical and simple (at least, to
implement) algorithms, as we will see.

We note that the above guarantees also lead to approximations on pairwise dot-
products; see exercise C.12.

We remark that the embedding A given in Theorem 9.1 is not particularly compact,
since it requires an independent Gaussian. This could be formiddably expension.
Here one can instead replace the Gaussian entries with {—1,0, 1} entries generated
by appropriate hash functions [Ach01; DKS10; KN14; CJN18]. The intuition is
similar because {—1, 0, 1}-random variables behave similarly to Gaussian’s in a certain
technical sense. (They are both sub-Gaussian; see [Ver18]). There is particular interest
in ensuring that A is column-sparse, since this determines the running time of applying
A. An alternative approach uses Hadamard matrices to produce a version of A that
can be applied extremely quickly [ACO09].

An important application of dimensionality reduction is in accelerating numerical
algorithms on large matrices. See for example [Wool4a; DM17].

9.2 Gaussian random variables: an interface

Gaussian random variables are an extremely convenient class of random variables. To
stress this point, rather than giving an explicit definition and proceeding with the
mathematical analysis, we first outline (just a few of) the nice properties of Gaussian
random variables, and put them to basic use. Later we will prove these properties,
mostly by elementary calculus.

A Gaussian distribution N (u, 0?) is parametrized by two parameters p and o2
We write z ~ N(u,0?) to denote a real-valued random variable x € R sampled by
the (yet unspecified) Gaussian distribution. The paramters pu and o2 have simple
interpretations.

Fact 9.2. Let x ~ N (p,0?). Then the mean and variance of x are
E[z] = p and Var[z] = o*.

We abbreviate N = N(0,1) for the special case of a Gaussian random variable
with mean 0 and variance 1.
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Some simple operations on Gaussian’s produce new Gaussian’s with their pa-
rameters naturally modified. First, scaling or shifting a Gaussian produces another
Gaussian.

Fact 9.3. Let v ~ N(0,0%) and let « € R. Then ax ~ N(0,a?0?) and x + a ~
N(a, 0?).

Second, adding two Gaussians produces another Gaussian with the means and
variances (necessarily) added together.

Fact 9.4. If vy ~ N(u1,0%) and xo ~ N (pa,03), then x1 +x9 ~ N (11 + pa, 0% + 03).

We also note that Gaussian’s have nice exponential moments. Recall that expo-
nential moments previously appeared when developing the Chernoff bound. Likewise,
the following fact will eventually imply (below) that sums of Gaussians squared are
well concentrated.

Fact 9.5. Let x ~ N and t < 1/2. Then

1

E{et’ﬂ = ﬁ

9.2.1 Concentration of length

We are also interested in ensembles of Gaussian random variables. For k € N, let
N*(u,0?) denote the distribution of k-dimensional vectors where each coordinate
is a (u,0?)-Gaussian. That is, when we write z € N*(u,0?), we mean that each
x; ~ N(u,0?), independently. Note that for z € N*(0,0%) has expected squared
length

E{H:{:HQ} = ZE[aﬂ = Var[z;] = ko”.

i=1 =1

As a direct consequence of fact 9.5 above, the squared length ||z|* of a Gaussian
vector  ~ N* will be extremely well concentrated, as follows.

Fact 9.6. Let x ~ N*(0,0%) be a Gaussian vector. Let a > 0.

1. If a« <1, then
P[lel* < a E[Jal?)] < (ac=)""
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2. If a > 1, then

P[la]* > aE[Jal’]] < (ac'=)"".

Proof. Let us prove this fact because we only need the above facts to do so. Scaling
x (and invoking fact 9.3), we can assume that z € N* and p = E{||x||2} =k.
Let a € [0, 1]. For ¢ > 0, we have

2 _ —t|l)? —tak] © —t]al|?] jtak () - —mf) tak
P{||x|| Sak‘} P{e > e } SE[e ]e (izl_[lE{e } e

© 1 k/2 1 |
= (1—1—%) exp(atk) = exp(k; (at — 5 n(l-+ 2t)>).

(a) is by Markov’s inequality. (b) is by independence of the z;’s (noting that ||z||* =
S,2?). (c) is by fact 9.5. The (exponent of the) RHS is minimized by

1 1 -«
Tl 2 (6-1)
Plugging in ¢ per (1) gives
k)2
P(lelf® < a] < (ae)"",
as desired.
Now let @ > 1. For any ¢ € (0,1/2), we have
P[[a] = ak] = P[elel” > ¢tok] @ etlel ~tok]
(e) 1 \*/? k
< (1 — 2t> e — exp<—2(2at +1In(1 - 2t))>
by (d) Markov’s inequality and (e) fact 9.5. The RHS is minimized at
= e =21
R Y T 20
moreover, the RHS is in (0,1/2) for all @ > 1. Plugging in, we have
k)2
P{Hx”z > ozk:] < (ozel_a) / :
as desired. [
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An important case is where o = (1 +¢) and € > 0 is close to 0. Then fact 9.6
implies the following.

Lemma 9.7. Let x ~ N%(0,0?) be a Gaussian vector. Let ¢ € (0,1]. Then
(i) P[HJUH2 <(1- E)E[HxHQH < e k2 for c =1 —1In(2) ~ .307.

(ii) Pz]* > (1+ € E[[l|?]] < e */*.

Proof. By scaling, we can assume that 02 = 1 and HxH2 = 1. We have

Pllaf? > (1+ k] £ (14 ee )" L ehr2,

Here (a) is by fact 9.6. (b) is because 1+ ¢ < e“= for € € [0, 1].
Likewise, we have

Pl < (1- k] £ (1 - )2 £ et

(c) is by fact 9.6. (d) is because 1 — e < e~/ for € € [0, 1]. O

9.3 Random Projections

So far, we know that Gaussian random variables can be scaled and added together, and
that the length of a squared Gaussian vector is well concentrated around its expectation.
In fact this is all we need for the dimensionality reduction result mentioned above.
The first lemma considers the projection of a single vector.

Lemma 9.8. Let A ~ N**? be a random matriz where each coordinate Aj is an
independently drawn sample from N. Let € > 0 be sufficiently small. For any vector
x}

1
P|(1 = ezl < Ll Azl < (1 + )llall*| 21— 2¢7"

Proof. Scaling if necessary, we can assume without loss of generality that ||z|| = 1. For
i € [k], let a; = ATe; be the ith row of A. We have a; ~ N™. Consider (a;, x) = (Ax);,
as a random variable. By facts 9.3 and 9.4, (a;, x) is a Gaussian random variable with
mean 0 and variance

That is, (a;,z) ~ N for each i. In turn, we have (Az) ~ N*. As a k-dimensional
Gaussian vector, || Az||* will be very well concentrated at its mean per Lemma 9.7. [
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Consider Theorem 9.1 from the introduction, where we have a set of n points
P C R?, and randomly project it into R¥ with the linear function

1

T
f(x) T
where k = O(log(n)/e?) and A ~ N**¢. By Lemma 9.8, for each x € P, we have

Az,

(1= llal® < If@)I* < (1 +e)lz]” (9:2)

with probability of error (say) < 1/n'°. By the union bound, we have (2) for all x
with probability of error < 1/n?.

Theorem 9.1 also promised that all pairwise distances are preserved up to an
(1 + e)-multiplicative factor. By linearity of f, we have

1F(2) = F@)IF = 1 f (@ = )I?

for any two points z,y € P. We now argue, as before, that the lengths of the pairwise
differences x — y are all preserved with high probability.

9.4 Gaussians

Based on Theorem 9.1, a distribution satisfying facts 9.2-9.5 (from which all other
facts and theorems are derived) may seem too good to be true. Let us now define this
distribution formally and verify these simple facts.

The Gaussian or normal distribution with mean p € R and variance o > 0 is the
real-valued random variable with density function

S

f(x) We . (9.3)
(By Lemma 9.9 below, this random variable indeed has mean p and variance o2.) We
let NV(p,0?) to denote the normal distribution with mean g and variance o2, and
write X ~ N(u,0?) to denote a random variable X € R with distribution N (p, 0?).
A normalized Gaussian or standard normal random variable is a Gaussian random
variable with mean 0 and variance 1. We abbreviate A(0,1) by N'. For n € N, we
let N™ denote the joint distribution of n independent normalized Gaussian random
variables.
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9.4.1 Some preliminary calculus

Lemma 9.9. Let p € R, 0 > 0, and

o) = 1 @2

V2mo?

Then we have the following.

1. /O:Of(x):l.
2. /_O:Oxf(x) = .

3 /_Z(x ~ 2 f(z) = o,

Proof. We consider the normalized case u = 0 and 0 = 1. The general case follows by
appropriate change of variables. We have

oo 2 2 oo 5 o 2 roo 5
</ e /2 d:z:) = / e @2 qady = / / re”" /2 drdf
—00 —00 0 0

= 27r/ re "2 dr = 2.
0

Taking the square root of both sides gives the first claim. For the second claim, we
have

—00

/_O:O ze 2 dy = [6712/2}%0 =0.
For the third claim, we have
/o:o 222 dy @ {—xe‘xz/z]c:o + /O:O e "2 = 1
by (a) integration by parts. O

Lemma 9.9 immediately implies both fact 9.2 and fact 9.3, which we restate for
convenience.

Fact 9.2. Let x ~ N (p,0?). Then the mean and variance of x are

E[r] = u and Var[z] = o°.
Fact 9.3. Let x ~ N(0,0%) and let a € R. Then ax ~ N(0,a%0?) and z + o ~
N(a, 0?).
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9.4.2 Rotational symmetry of Gaussian vectors

Let X ~ N™, and let f(x) be the density function of x. The density function has the
following compact form. The key feature is that the density at a point only depends
on the squared length of the point. That is, it is rotationally symmetric.

Lemma 9.10. f(z) = (2r) "/?e~(@)/2,

Proof. Since each x; ~ N independently, we have

fla) = J[@r)Pemil? = (2m) /e @)/,
1=1

as desired. [

Lemma 9.11. For any orthonormal matriz U, and random Gaussian vector x,

Ux ~ N™.

Proof. U induces a rotation, and the Gaussian is rotationally symmetric. For those
who prefer explicit calculations, we have

F(Uz) 2 (2m) V2002 @ (o) 2 D (),
where (a) is by Lemma 9.10, (b) is because UTU = I, and (c) is by Lemma 9.10. [
Lemma 9.12. Let v ~ N™ and u € R*. Then (u,x) ~ N(O, ||u||2)

Proof. Tt suffices to assume w is a unit vector. By extending u to an orthonormal
basis, let u = UTe; for an orthogonal matrix U. Then

(u, ) = <Ut€1,$> = (e, Uz) = (Ux), N,
where (a) is by Lemma 9.11. O

Fact 9.4, which says that Gaussians sum nicely, now follows by combination of
fact 9.3 and Lemma 9.12. We restate fact 9.4 for convenience and leave the proof to
the reader.

Fact 9.4. If vy ~ N (i1, 0%) and 3 ~ N(pa,03), then z1 +x9 ~ N (11 + pi2, 03 + 03).
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9.4.3 Moments of squared Gaussian random variables

The last fact to prove concerns the moment generating function of the square of a
Gaussian random variable. Recall that amplifying the following bound leads to the
concentration of length of high-dimensional Gaussian vectors, which in turn, allows
us to obliviously embed high-dimensional data in Theorem 9.1.

Fact 9.5. Let x ~ N andt < 1/2. Then

1

E{etﬁ} = ﬁ

Proof. We have

1 2
E|:etgj2:| _ /€t52 Plz — 5| (@ /6(2&1)5 /2
s vV 21 Js
foro=1/v1-2t

1 /6_52/202
V2T Js
1
V1=2t

Here (a) plugs in the density function from equation (9.3). (b) is by Lemma 9.9.1
w/r/t the density function for N'(0, o?). O

(b)

9.5 Additional notes and materials

Lecture materials. Click on the links below for the following files:
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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9.6 Exercises

Exercise 9.1. Using only fact 9.3, show that for x ~ N (p,0?) and a € R,
ax ~ N(a,u, 04202).
Exercise 9.2. Show that there exists universal constants ¢, ca > 0 such that for all
x with |z] < ¢,
14+2< eT02e

(In other words, you can choose whatever constants ¢; and ¢y are convenient to you.)

Exercise 9.3. Let P C R? be a set of n points. Let f : R — R* be a random projection
with & = O(log(n)/e?) (per Theorem 9.1). Recall that with high probability (say,
>1—1/n'), we have

(L=9lz)* < I f@)]* < (1 +&)]l|
for all x € P, and we also have
(1= ollz —ylI* <IIf(x) = FWI* < A+ )]z —y|”
as well as
(L=9lz+yl* <IIf(@)+ FWI* < A+ e)lz +y)*
for all z,y € P. Show that with high probability, we also have

(), f(y)) = (&, ] < ellz]l]ly]

for all z,y € P.

Exercise 9.4. Let P € R be the random projection function as described in
Theorem 9.1, for a parameter ¢ to be determined. We want to argue that for
¢ = O(k/€e?*), P approximately preserves all of the vectors of a fixed subspace U of
dimension k with high probability (in k).

Tt might by helpful to work through the special case where ||z| = ||y|| = 1. Showing O(e||z]|||y]|)
error is fine; a proper €l|z||||y| then follows from dividing € by a constant factor.
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To express this more formally, let U be a fixed (but unknown) subspace of R™ of
dimension k. We claim that, with probability at least 1 — e~?%*) we have

(1—o)|lz|* < ||Pz||” < (1 + €)||z|” for all z € U (simultaneously). (9.4)

Note that the algorithm does not know U; for this reason, P is called an (1 £ ¢€)-
approximate oblivious subspace embedding. Oblivious subspace embeddings are useful
for developing faster approximation algorithms in numerical linear algebra.

In this exercise we prove that P is an oblivious subspace embeddings with high
probability. Let U be a subspace of dimension k. Let S* be the unit sphere in the
k-dimensional subspace we want to preserve. Since the requirements of (C.1) are scale
invariant, it suffices to establish (C.1) for all points in S*.

Our argument makes use of a geometric technique called e-nets. For a set S, an
e-net is a set NV such that for every point s € S, there is a point x € N such that
|z — s|| < €. We need to show that there exists a relatively small e-net for S¥.

1. Let N C S* be a maximal set of points such that any two points in N have
distance at least e. Show that N is an e-net, and that N has at most (1 +2/¢)"
points.?

Let N be an (1/2)-net of S* with at most 5* points. Next we establish that we
preserve the length of all points in N is preserved with high probability.

2. Show that with probability 1 — e=9%®) we have ‘HP@’H2 - 1‘ <eforallz e N,
and |(Px, Py) — (z,y)| < e forall x,y € N.

So now we know that we preserve all points of N with high probability. We want to
argue that this suffices to preserve all the vectors.

3. Prove that for any unit vector € S¥, one can write x = 2+ 1 + 22 + - - - such
that for all 2:

(a) [l < 27°.
(b) @i/ |zl € N2

2This is similar but different from the e-nets in Chapter 13.

3Hint: N packs |N| interior-disjoint k-dimensional balls of radius €/2 into an k-dimensional ball
of radius 1 + ¢/2. It is helpful to know that the volume of an n-dimensional ball of radius r is ¢, r"
for a parameter ¢, > 0 depending on n.

“Hint: Choose xg to be the closet point in N to 2. Observe that ||z — zo|| < 1/2 because N is a
(1/2)-net. It remains to express  — g as the sum z1 + x5 + - --. How might you choose x1?
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Now use the representation above to prove that P is an oblivious subspace embedding.
4. Prove that (C.1) holds with probability at least 1 — e=9®*),

The high-level takeaway from the proof is that if you can embed an e-net of the unit
sphere for constant €, then you automatically embed the entire subspace.
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Chapter 10

Locality sensitive hashing and approximate nearest neighbors

10.1 Nearest neighbor search

In similarity search, we want to preprocess a large database of items such that, given
a query in the form of another item, we can quickly retrieve the “most similar” item
in our collection by some metric. The “most similar” item is sometimes called the
nearest neighbor. Of course, one could directly compare the queried item to every
element in the database and output the most similar. The goal is to structure the
data to serve the queries in sublinear time.

As a simple warmup example, suppose we want to implement similarity search 1
dimension over a database of n real numbers. Each query is defined by a real value ¢,
and we want to retrieve the closest number in the database to q.

1-dimensional similarity search is easy. We first sort our collection of numbers and
store them in an array. Given a query ¢ € R, we run binary search on the array to
find the first numbers smaller and bigger than q. We return the closer of the two.
This takes O(logn) time. The above approaches extends to low-dimensional data
sets, via quadtrees and multi-dimensional range trees. Both of these approaches scale
exponentially in the dimension d. If the data lives in very few dimensions - like 3
dimensions, as in many physical situations - this is still very good.

As previously discussed, there are many natural settings where the data is rep-
resented geometrically as high-dimensional vectors. We are interested in nearest
neighbor search over these large vectors. The input consists of n points P C R? that
we can preprocess to build some kind of data structure. Each query is specified by
another point z € R%, and the goal is to output the point x € P closest to z by some
metric. We will consider two metrics.

1. The Fuclidean distance, ||z — z||.

2. The angle between x and z (as a real value between 0 and 7).

150



10. Locality sensitive hashing and approrimate nearest neighbors Kent Quanrud
10.1. Nearest neighbor search Fall 2025

If all the vectors in P are normalized to have the same length, then the nearest
neighbor in Euclidean distance and angle are the same. However, we will consider
approximations for this problem, in which case there is a difference between the two
metrics. We consider angular nearest neighbors in Section 10.2 and Euclidean nearest
neighbors in Section 10.3.

A natural idea, at least for Euclidean distance, is to use the dimensionality reduction
techniques previously discussed. Recall that by simply projecting onto vectors of
independent Gaussian entries, an n-point data can be embedded into O(log(n)/e?)
dimensions while preserving all pairwise distances up to an (1 £ €)-multiplicative
factor. Perhaps one insert these lower-dimensional embeddings into geometric data
structures like quadtrees. Unfortunately, the exponential dependence on the dimension
incurred by these data structures means that even O(logn) dimensions — which was
fairly small by our standards — still requires n®®) time and space.

From nearest neighbor to “close enough”. One can reduce nearest neighbors
to distance-based membership queries. An approximate distance-based membership
data structure takes as input a collection of points P, and is parametrized by a radius
r > 0 and an approximation factor ¢ > 1. Given a query point ¢, the goal is to either:

1. Output a point p € P at distance < or; or

2. Declare that all points have distance > r.

We can reduce c-approximate nearest neighbor queries to a series of (r,o)-
membership queries as follows. Suppose all possible distances of points between
P are in the range [Apin, Amax]. For i € Z, let

ri=0".

We create an (r;, o)-data structure for every radius r; with Ayin/2 < r; < poly(n)Apax-
This creates log, (poly (1) Amax/Amin) total membership data structures.

Now, suppose we want to find a o-approximate nearest neighbor to a query point
q. We identify, via binary search, the smallest radius r; for which the corresponding
membership query returns a point p;. Since the membership query r;_; failed, we
know that r; is at most a o-factor greater than the minimum distance between ¢ and
P, and the returned point p; is a g-approximate data structure.

Note that via binary search, we only need

log (logo (pOIY(n)Amax/Amin)) = O(IOg IOg (nAmax/Amin) + log(U))

membership queries to identify ;.
We also observe that it suffices, up to logarithmic factors, to succeed with constant
probability. We can amplify to high probability with repetition.
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LSH: when hash collisions are good. The algorithms we develop use hashing
in a counterintuitive way. Previously, in applications such as heavy hitters and hash
tables, hashing was used to randomly spread out the elements and reduce collisions.
Here, we will design hash functions where closer points are more likely to collide. This
technique is called locality sensitive hashing (LSH) [IM98]." The high level strategy
is to build a hash table over the input set P using locality sensitive hash functions.
Given a query point z, we hash z and hope to find the nearest neighbor in the same
hash bucket.

Such an algorithm may only succeed with limited probability. We amplify by
building many such hash tables independently. On a query point z, we hash z into all
of the hash tables, and return the first point we find that is close enough.

10.2 LSH for angles

Suppose the point set P lies on the hypersphere S9! = {x eRY: x| = 1}. A popular
measure of distance on S?! is the angle between points. For two points x and y,
let Z(x,y) € [0, 7] denote the angle between the points x and y between 0 and .
We may assume that all the points in our data set P, as well as any query point, is
normalized to lie on S¢~1. We describe an LSH scheme due to [Cha02].

Let @ € [0,7] be a fixed angle. Our goal is to implement a 2-approximate
membership query for angular distance 6. Formally, given a query point y, we must
either:

(i) Output a point x € P with Z(z,y) < 26, or
(ii) Decide that there are no points z € P with Z(z,y) < 6.

Let k& € N be a parameter TBD. We will generate a k-ary hash function h : S¥1 —
{-1, 1}k where each coordinate is generated by splitting S*~! in half along a random
hyperplane. For each coordinate i € [k], let g; ~ N¢ be a random Gaussian vector.
We define a hash function h : S** — {—1,1}" by

hi(x) = sign({g:, 7))

for each coordinate i.
At a high level, we want to argue that collisions in A are correlated with angle. We
leverage the following fact, which is entirely based on the rotational invariance of A%

'Here the author would like to propose the term clashing.
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Lemma 10.1. Let z,y € S, and let g ~ N?. Then

Z(ZL’, y) \\‘Xi

Plsign({(g, r)) # sign({g,y))] = : \
i T,

Proof. Recall that N? is rotationally symmetric. Rotating, , .- !
we may assuming that x and y are spanned by the first two |
coordinates, and consider the simpler (to visualize) setting ¢ |
where x,y € R? and g ~ N2, as on the right.

In R%, g makes an angle (with the x-axis) between 0 and 2. By symmetry, it is
equally likely to take any particular angle. There are two regions of angle Z(x,y) in
which sign((g, z)) # sign({(g, y)), here marked with a red X. The odds of g landing in
these regions is Z(z,y)/n. O

7 log(n)

We set the number of hash coordinates to k = === If Z(z,y) < 0, then

4(w,y)>kN

™

_Lzy) _ 1
e 2k e log(n)/2 _ \/_
n

Plh(x) = h(y)] = (1 -

On the other hand, if Z(x,y) > 26, then

k
Plh(z) = h(y)] = (1 - 4(9”’3/)) < oL < ptont) _ L

T n

Thus, when querying a point y:

1. If there is a point x € P with Z(x,y) < 0, then it collide with y with probability
(approximately) > 1//n.

2. We expect to collide with at most 1 point = € P such that Z(z,y) > 26.

To amplify our success rate, we repeat the experiment O(y/nlog(n)) times. Then,
if there is a #-close point, we will collid with it with high probability. The query time
is O(dy/nlog(n)) in expectation because we expect 1 “junk” neighbor per hash table
on average.

Theorem 10.2. With O(dn3/2 polylog(n)) preprocessing time and space, one can

query for 2-approxzimate nearest neighbors w/r/t angular distance in O(d+/n polylog(n))
expected randomized time and with high probability.
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10.3 LSH for Euclidean distance

We now consider o-approximate nearest neighbors in Euclidean metrics, for fixed
o > 1. Again it suffices to consider fixed-radius approximate membership queries.
Given a fixed radius r and a set of n points P C R? we want to preprocess P to be
able to quickly serve the following query: given a query point ¢, either:

(i) Return a point p € P with ||p — ¢|| < or; or
(ii) Declare that there are no points p € P with ||p — ¢|| < r.

Our goal is to develop a locality-sensitive hash function h : R? — Z* for Euclidean
distance. We will design a scale-invariant function A such that the collision probobilities
of two points z,y € R? depend only on the ratio ||z — y||/r to r. For ease of notation,
we rescale and assume that » = 1. Thus, given a query point ¢ € R?, we want to:

(i) Return a point p € P with ||p —¢|| < o; or

(ii) Declare that there are no points p € P with ||p —¢|| < 1.

10.3.1 Random line embeddings and buckets

We first define a hash function h : R? — Z that outputs a single integer. Later we
will consider a k-coordinate hash where each coordinate is an independent copy of
this single-coordinate hash.

To build some intuition, consider the 1-dimensional case d = 1. As mentioned
earlier, we can build a binary search tree over P and serve queries in O(logn) time.
Of course this answers the problem exactly. To do even faster, we can try to take
advantage of the margin of error allowed in our approximation queries.

Consider the following hash code h: R — Z:

hr) = {x—l—OzJ’

o
where « € [0, 1] is drawn uniformly at random. h(z) is splitting R into intervals of
length o, randomly translating the start of each interval.

Now, if two points z,y € R have distance |x — y| > o, when they will never collide.
On the other hand, if z,y € R have distance |z — y|, then they have a 1/0 chance of
being hashed together. E.g., for o = 2, we have a 50% chance of z and y colliding.

We transfer this “random bucket” approach to R? by randomly projecting onto R.
We define h : R? — Z by the function

hx) = [(g,7) + o],
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where g ~ N4 and a € [0, 1] uniformly at random. Geometrically, h(z) randomly
projects x onto a line, and then bucket the points in intervals of length 1. The random
value « € [0, 1] translates the buckets randomly.

e

| \ \ \ \ \ Vv )

gﬁ> R

For z,y € RY, we want to bound the probability of a hash collision h(x) = h(y).
The first lemma conditions on g and analyzes the effect of the random translation «.

Lemma 10.3. Let z,y € R?.
Plh(z) = h(y) | 9] = max{0,1 - [{z —y, g)[}.

Proof. Once the Gaussian is fixed, so are the coordinates (g, z) and (g,y) on the
line. We have h(z) # h(y) iff a randomly shifted divider (determined by « € [0, 1])
falls between (g, x) and (g,v). If |(g,x) — (g9,y)| > 1, the divider always splits = and
y. this always happens. For |(g,z) — (g,y)| < 1,  and y are split with probability

(g, z) — (g, 9)|- O

Now we analyze the full probability of a hash collision.

Lemma 10.4. Let x,y € R, and let f(t) be the density function of the standard
Gaussian N .

i) = h)] =2 | (Hx—yH)( K

Proof. Recall that (x —y, g) ~ ./\/(0, |z — y||2). In particular, (z — y, g) has density
function f(t/||lx —yl||)/||x — y||, and |[{x — y, g)| has density function 2f(||x — y||t).
We have
P{h(x) = h(y) ”x_y“ [ PlaG) = (o) (g, — )] = 1l — yle) di
fllz —ylit) dt
yH/

as desired. ]
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Remark 10.5. For t € [0,1], g(0) = f(t/o)/o is minimized by o = 1.

Lemma 10.4 gives the exact probability of a collision of two points x and y as a
function of the distance between ||z — yl||. Let us compare the probabilities of a “close’
pair of points, with ||z — y|| < 1, and a far pair of points, with ||z — y|| > 0. Let

Y

pz?/ol(l—t)f(t)dt

be a lower bound on the collision probability when ||z —y|| < 1. Let

0=2 [[a=0su/o)a

[

be an upper bound on the collision probability when ||z — y|| > 0. We note that p is
a fixed constant, about .368746....

Since ¢ is decreasing in o, p > ¢q. That is, close points are more likely to collide
then far points. To what extent? It turns out that the gap is not big enough to use h
directly as an LSH function. But we can remedy this by amplification, as follows.

10.3.2 Amplifying the gap
Let £ € N be a parameter TBD. We define a hash function
h:R*— RF

by defining each coordinate h;(x) according to the single-coordinate hash function in
Section 10.3.1; namely, as

hi(x) = [{gi, x) + ]

where g; ~ N and «; € [0, 1] uniformly at random.
For any two points x and y, by Lemma 10.4, we have

Plh(z) = h(y)] = (nyH [a- t)f(M) dt)k.

In particular, recalling the values of p and ¢ as above, we have
P[h(z) = h(y)] > p* when [jz —y|| <1
and

P[h(x) = h(y)] < ¢* when [z — || > o.
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Now, increasing k decreases both p* and ¢*, which is both good and bad. As p*
decreases, so do the odds of finding a near neighbor when we hash. We will need to
rebuild the data structure £ = 1/p* times to be able to find a good neighbor with
constant probability, which is expensive.” On the other hand, as ¢* decreases, the
number of hash collisions with bad points also reduces. This is good algorithm pays a
running time proportional to the total number of bad collisions as it scans the hash
bucket. Overall, the ratio (¢/p)* decreases, so to some extent, k is useful.

Ultimately, the quantity we want to minimize is

k@)k + (Z)kn (10.1)

k
The (1/p)* term represents having to compute ¢ = (1/p)* hash codes. The (%)

n
represents the expected number of hash collisions with bad elements across all ¢
instances. The full running time is the above quantity times d, since we need O(d)
time to hash a query point or compute the distance between two points.

We can rewrite (10.1) as

1\F
= | (k+d¢"n).
(5) (oo
Let k = log(n)/log(1/q) = log(1/n)/log(q). Then ¢*n = 1, and
k
k<1> _ 108(%) rog1/m/10801/0)
p log(1/q)

Consider the exponent log(1/p)/log(1/q): since p > g, this quantity is less then 1.

Theorem 10.6. One can compute a o-approzimate nearest neighbor w/r/t Fuclidean
distance with high probability in O(dnp(")) randomized time, where

oy BT b [fa-nsa a=2 [0 -0f/o)d

and f(t) = e /2 /\/2x is the density function of the standard Gaussian.

2Indeed, the probability of failing to find the good neighbor in each of ¢ constructions, each of
which has k hash coordinates, is

(1 fpk)é ~e Pl
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What is p(0)? Ask the computer:

Plot of p(o) for LSH in Euclidean Space
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10.4 Additional notes and materials

Lecture materials.

Click on the links below for the following files:
e Handwritten notes prepared before the lecture.

o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:

o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials.

Click on the links below for the following files:
e Handwritten notes prepared before the lecture.

o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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10.5 Exercises

Exercise 10.1. In this exercise, we will develop a 2-approximate LSH scheme for
bit strings s € {0, 1}d of a fixed length d with respect to Hamming distance. The
Hamming distance between two strings s, ¢ € {0, l}d this fraction of coordinates in

which they differ:

_ield: s #t}|

Hamming(s, t) y

Of course one can treat bit strings as vectors in R? where the Hamming distance
coincides with the FEuclidean distance squared. Here we explore an alternative
approach.

1. Consider the randomly constructed hash function h : {0,1}* — {0,1} defined
by

h(z) = z;,

where ¢ € [d] is sampled uniformly at random. For two points s,t € {0, 1}d,
what is P[h(s) = h(t)], as a function of the Hamming distance between s and ¢?

2. Fix a target distance r € [0, 1]. Construct a data structure that over a set P of
n strings {0,1}% to answer the following query with high probability.

Given a query point s € {0,1}, either return a point © € P with
Hamming distance < 2r from s, or declare that there are no points
within Hamming distance r from s.

In addition to describing the algorithm, one should analyze the preprocessing
time and space, the query time, and the probability of correctness.

3. Briefly describe how to use the above data structure to efficiently find 2-
approximate nearest neighbors with respect to Hamming distance (with high
probability). Analyze your running time.
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Chapter 11

L+i-metric embeddings and sparsest cut

11.1 LP duality, line embeddings, and max-flow min-cut

The reader may (should) have seen max flow, the max-flow min-cut theorem, and
some algorithms for max flow in an introductory class on algorithms. Here we present
these results from a different perspective that primes us for the techniques used to
approximate the sparsest cut problem.

11.1.1 Packing and covering paths

Let G = (V, E) be a directed graph', and let s, € V be two distinct vertices. We
call s the source and t the sink. A path packing is a collection of edge disjoint paths.
An (s,t)-path packing is a path packing of (s,t)-paths. The mazimum (s,t)-path
packing problem? is to

find a mazimum cardinality packing of (s, t)-paths.

An (s,t)-cut is a set of edges whose removal disconnects s from t. The minimum
(s,t)-cut problem is to

L@ is allowed to be a multi-graph, with multiple copies of the same edge.
2Better known as the uncapacitated mazimum (s,t)-flow problem for reasons we discuss later.
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find the minimum cardinality (s,t)-cut.

Both can be understood as a generalization of reachability. Reachability is con-
cerned with whether there is a single connection from s to . Both the maximum flow
and minimum cut problems measure the strength of the connection from s to t.

We are interested in these questions both algorithmically and (graph-)structurally.
Algorithmically the problems are highly non-trivial, as there are exponentially many
possible paths from s to t to take into account. It is not obvious that there is a
polynomial time algorithm for either problem.

11.1.2 Duality.

The (s, t)-path packing and (s, t)-cut problem are dual packing and covering problems,
in the following sense. We are selecting paths that “pack in” to the edges of the graph
— each path uses up all of its edges. Conversely, an (s, t)-cut must contain at least one
edge from every (s,t)-path. That is, we are trying to “cover” the paths with edges,
where we interpret each edge as a set that covers all the (s, ?)-paths that contain that
edge. In short:

paths pack into edges, and edges cover paths.
As with any packing and covering problem, we have the following inequality.
(max (s, t)-path packing) < (min (s, )-cut). (11.1)
Indeed, let P denote a path packing, and let C' C E be an (s, t)-cut. We have
Pl=Y 1< bnel Ll

peEP peEP

Above, we treat each path p € P as a subset of edges. (a) is because, as an (s, t)-cut,
C' contains at least one edge from every (s,¢)-path. (b) is because the paths p € P
are edge disjoint, so the sets p N C over p € P are also disjoint. The following is a
conceptual sketch of our argument.

C

SN

A
The inequality (11.1) inspires some basic questions. Is the inequality ever equal? Is

the inequality ever strict?
We now introduce some variations of the (s, t)-paths and cut problems.

161



11. Li-metric embeddings and sparsest cut Kent Quanrud
11.1. LP duality, line embeddings, and max-flow min-cut Fall 2025

11.1.3 Capacities and costs.

A natural generalization of disjoint (s, t)-paths allows edges to be reused, and extends
the input to include edge capacities ¢ : E— R~ that set a numerical limit on how
many times each edge can be used. For example, if an edge e has c¢(e) = 2, then this
implies we are allowed to use e twice (i.e., as if there are two copies of €). The same
path is allowed to be selected multiple times. Formally, the problem becomes:

Find a collection of paths P of maximum cardinality |P| such that each
edge e is contained in at most c(e) paths.

We denote the problem formalized above as (Max-Paths). Abusing notation, we will
also let (Max-Paths) denote the optimum objective value of the (Max-Paths) problem.

Introducing edge capacities makes it even more challenging to find a polynomial
time algorithm. Before, without edge capacities, it is clear that the optimum solution
has a polynomial number of paths since each path must use up at least one edge. Once
we introduce capacities — which may be large numbers expressed in a logarithmic
number of bits — we can no longer assume that the maximum path packing has
polynomial size!

Flip back to the dual (s,t)-cut problem. A natural generalization introduces
positive edge costs ¢ : E — Rsq; the problem becomes:

Find an (s, t)-cut C C E of minimum cost » _ c(e). (Min-Cut)
ecC

The minimum cardinality cut problem is equivalent to the minimum cost cut problem
with uniform costs (c¢(e) = 1 for all e). In contrast to edge capacities, edge costs do
not invoke the risk of the optimum solution no longer being compact.

As with (Max-Flow), we write (Min-Cut) to denote both the problem described
above and the optimum value of that problem.

When the capacities and costs are based on the same vector ¢, then (Max-Paths)
and (Min-Cut) are dual” to one another. In particular one can show that (Max-Paths) <
(Min-Cut) by a similar argument as before in the uncapacitated /uniform-cost setting.
We leave the proof to the reader.

Lemma 11.1. Let G = (V, E) be a directed graph and s,t € V. Let ¢: E — R+ be a
fized set of capacities / costs. Then

(Max-Paths) < (Min-Cut).

3We will formalize the definition of dual soon.
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11.1.4 Fractionally packing and covering paths.

Another variation of the above problems allow for fractional solutions. Consider first
path packings. Let R; denote the family of all (s,t)-paths. A fractional collection
of paths is an assignment z : B; — R>( giving nonnegative weight to every path. A
fractional path packing is a fractional collection of paths x that satisfies the capacity
constraint c¢(e) for each edge e in the following quantitative sense:

Z x, < c(e).

(Here “p 3 €” is summing over all p € B; such that e € p.) Subject to this constraint,
the goal is to find the fractional path packing of maximum total quantity,

S,

PER ¢

Putting it all together, the entire fractional path packing problem is given by:

maximize Z xp over T : By — Rxg
PER ¢

st. Y x, <cle) forall e € E.

poe

(Max-Flow)

Note that the objective (3°,x,) is a linear function of z, and the constraints (x, > 0,
>pse Tp < c(e)...) are linear inequalities. This feature is very important and we will
return to it in a moment.

Due to the continuous nature of the fractional path packing problems — imagine x,,
units of water flowing along the path p — it is commonly referred to as the mazimum
flow problem. For the rest of this section, we let (Max-Flow) refer to the maximum
flow problem formulated above. Abusing notation, we will also let (Max-Flow) refer
to the optimum value of (the problem) (Max-Flow). We also note that the (discrete)
path packing is also called integral mazimum flow.

Compare max flow with the (integer) path packing problem discussed above, where
we can only select integer multiples of paths. Clearly, any integer solution is a feasible
solution to the fractional version. For this reason, the fractional path packing problem
is called a relaxation of the integer path packing problem — every feasible solution to
the latter is feasible in the former. As a relaxation of a maximization problem, we
always have (Max-Flow) > (Max-Paths).

We can apply the same fractional perspective to the minimum cost (s,t)-cut
problem. Recall that an (s,t)-cut contains at least one edge from every (s,¢)-path. A
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fractional (s,t)-cut is a fractional combination of edges y : E — R>( that contains (in
sum) one unit of edges from every (s, t)-paths. An edge cost c¢(e) are now interpreted
as the cost of one unit y(e). All put together, the fractional relaxation of minimum
cost (s, t)-cut is given by the following problem:

minimize Y c(e)y. over y: E — Rsg s.t. Y _y. > 1 forall p € Py, (11.2)
eck eep

(11.2) has m variables but exponentially many constraints. This setup leads to
the following situation. We encourage the reader to pause and consider the following
question herself before reading on.

Suppose you were given a vector y € RE,. How would you verify, in
polynomial time, that y is a feasible solution? In particular, how does one
verify that for every (s,t)-path p, the sum of y.’s over e € p is at least 17
(Is it even possible?)

The question is nontrivial because there is not enough time to enumerate every
(s,t)-path. But let us reformulate the question slightly: verifying every path p has
>ecp Ye = 1 is the same as verifying that the minimum 3 c, y., over all p € B, is at
least 1. Let us reinterpret the values y : 2 — R>( as edge lengths. Then the covering
constraint is really saying that the length of the shortest (s,t)-path w/r/t edge lengths
Ye, 15 > 1; we can verify this constraint by computing the shortest (s,t)-path w/r/t y.
An equivalent formulation of (11.2), then, is as follows.

Find the minimum cost set of edge lengths y : E — R>o subject to s and t
having distance 1 in the shortest path metric induced by y.

This problem, besides being a relaxation of (s, ¢)-cut, is a very natural problem in its
own right. For this reason, and to help distinguish the continuous nature of (11.2) for
the discrete min-cut problem, we will also refer to the fractional min-cut problem as
the (s, t)-minimum cost metric problem. We will write (Min-Metric) to denote both
the optimization problem and the value of the optimization problem formulated in
(11.2) above.

11.1.5 Linear programming and LP duality

The fractional versions of the (s, t)-path packing and cut problem described above are
examples of linear programs, a class of mathematical optimization problems previously
introduced in Chapter 6. We briefly review the basics.
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Linear programs (LP’s) are constrained continuous optimization problems where
the goal is to (a) select a vector x € R™ that (b) optimizes a linear objective subject
to (c) linear equality and inequality constraints. That is, an optimization problem of
the form

n
min/max (b,z) = Y _bjz; over z € R"
=1

s.t. Aix < ¢, Asx = ¢o, and Aszx > cs.

where Aq, Ay, A3 are matrices and b, ¢q, ¢o, 3 are vectors.

Clearly, linear programs are useful for modeling real problems where we seek
continuous solutions. Throughout this class we will encounter many different uses
for LP’s for understanding and solving discrete problems as well. A powerful feature
of LP’s is that they are polynomial time solvable *, and conceptually it is easy to
interact with these solvers as a black box. Moreover, real-world software for LP’s is
well-developed and reliable in practice.

We now introduce two canonical classes of LP’s that capture most combinatorial
problems.

Packing LPs. A packing LP is a linear program of the form
max (b, r) over v € Ry s.t. Av <ec. (P)

where A € RZ{™", b € RZ,, and ¢ € R”, all have nonnegative coefficients. We let
OpT(P) denote the optimum value of the LP (P).

The fractional path packing problem is our first example of an packing LP. For
path packing, we have one variable for every path. Identifying edges and paths as
coordinates, then, we have:

1. b= 1Rt the all-ones vector in R%t

2. ce Rgo is the edge capacities.

3. A e {0,1}"* is the incidence matrix defined by

A, — 1 %feEp
’ 0 ifednp,

for each edge e € E and path p € R;.

4More precisely, they are weakly polynomial time solvable, meaning the running times are
polynomial in the bit complexity of the input.
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Note that there are exponentially many variables in this LP so we could not even write
it down in full in polynomial time, let alone apply a black box LP solver. Fortunately
there are otherwise to solve the LP, as we will see.

Covering LPs. A covering LP is a linear program of the form
min (c,y) over y € RZ, s.t. ATy > b, (®)

where” A € RZ;™, b € R, and ¢ € R”,. We let OPT(C) denote the optimum value
of the LP (C).

The minimum cost metric problem above is our first example of a covering LP.
For minimum cost metric, we have one variable/column for each edge, and one
row /constraint for each (s,t)-path.

1. ¢ € RE; is the edge costs.
2. b= 1% is the all-ones vector in R

3. AT € {0,1}*"*F is the {0, 1}-incidence matrix defined by

1 if
AT = A, = tecp
P ’ 0 ifedp,

for each edge e € E and path p € ;.

Note that A, b, c are the same between our two examples.

LP duality. LP duality is about the relationship between the linear programs
(P) and (C), particular when the matrices and vectors A, b, ¢ are the same for both
problems. In this case (P) and (C) are said to be dual to one another.

Suppose we have dual pair of (P) and (C); i.e., A, b, c refer to the same objects in
either problem. Let 2 € R%, be any feasible solution to (P) and let y € RZ, be any
feasible solution to (C). We have -

(a) (c)
(b,x) < (ATy,z) € (y, Az) < (y,0).

Here (a) is because z > 0 and ATy > b. (b) is by definition of the transpose. (c) is
because y > 0 and Ax < ¢. Thus, for a packing problem (P) and a covering problem
(C) linked by duality, we have

Opt1(P) < OpT(C).

0f course, in (C), we could have written A instead of its transpose AT, and swapped b and c,
which would more closely resemble (P). It is convenient for the subsequent discussion on LP duality
for A, b and ¢ to have the same dimensions in (P) and (C).
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If this argument seems familiar, it is because we just saw it for packing and covering
paths in Section 11.1.2 above.

We ask the same question for packing and covering LP’s as we did for packing and
covering paths. When, if ever, is OpT(P) = OpT(C)? The all-important LP duality
theorem (here restricted to packing and covering problems) states that in fact they
are always equal.

Theorem 11.2 (LP Duality for packing and covering). OpT(P) = OpT(C).

We note that Theorem 11.2 holds even if A, b, and ¢ have negative coefficients.

We will see that LP duality has important consequences for many combinatorial
problems of interest — starting with max flow in the present discussion. Recall that
(Max-Flow) is a packing LP and (Min-Metric) is a covering LP. Moreover, they are dual
to one another. The LP duality theorem then tells us that (Max-Flow) = (Min-Metric).
As a relaxation, we also have that (Min-Metric) < (Min-Cut). That is:

(Max-Flow) = (Min-Metric) < (Min-Cut).

11.1.6 Max-flow min-cut via LP duality

We now prove the following well-know maxz-flow min-cut theorem.

Theorem 11.3 (Menger [Men27] and Ford and Fulkerson [FEF56]). (Max-Flow) =
(Min-Cut).

Typically this theorem is proven algorithmically by the Ford-Fulkerson algorithm.
Here we given an alternative proof based on LP duality®. Having already established
that (Max-Flow) = (Min-Metric) < (Min-Cut)”, it suffices to prove that (Min-Cut) <

\ \\/\

Let y € RY, be an optimum solution to the minimum cut LP, (11.2). We claim
that

5For a video, see https://youtu.be/J4yUdABv1tE.
"With very little effort, thanks to LP duality
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Given a fractional min-cut y, we can find a discrete (s,t)-cut C' C E with
total capacity, Y .cc c(e), less than or equal to the fractional capacity of y,

(c.y).
This is our first example of rounding a fractional solution to a discrete one.

Notation. Before proceeding, we introduce some standard notation for cuts. For
a set of vertices S C V, the directed out-cut of S, consisting of edges leaving S, is
denoted by

H(S) = {(u,v) € E:ue S, v¢ S}
The (directed) in-cut of S, consisting of edges entering S, is denoted by

6 (S)= {(u,v) e E:u¢ S, ve S}
11.1.7 Line embeddings and sweep cuts.

S

= Tt =

Recall that y also gives a set of edge lengths where the length of the shortest (s, t)-path
is 1. We leverage this insight to embed the vertices V' on the real line — assigning
values a1 V' — [0, +00) — as follows.

For each vertex v, let cv, be the length of the shortest s ~ v path w/r/t the edge
lengths y € RZ,. We have oy = 0. We also have

Q; = min Zye >1
PER¢ ecp

because of the covering constraints in (Min-Metric).

Consider the following random cut. We pick a value 8 € (0, 1) uniformly at random.
Let S ={v:z, <0}, and let S =V \ S. Since a, = 0 and a; > 1, the set of edges
from S to S is always an (s, t)-cut.

s S

- - — " =

&
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The Valye of this cut is randomized. Let us bound the cost of the directed cut
from S to S, in expectation. We have

E

3 c(e)} 23" c(e) Ple € 67(9))] 23" c(e)y. = (Min-Metric) (11.3)
S) eck

ecdt( ecE

Here (a) is by linearity of expectation. The key inequality, (b), is based on the shortest
path metric.

(<
— o~

For an edge e = {u,v}, we have e € 67(9) iff a, < 0 < «,, which happens with
probability at most «, — «,. Consider the shortest path from s to v w/r/t y, which
has length «,,. Concatenating the shortest path from s to u with the edge e,

s uB,
gives a walk of length «, + ¥., hence a, < v, + vye.

Consider now the inequality obtained in (11.3),

E

> cle)

ecs+(S)

< (Min-Metric).

We have generated a randomized (discrete) cut that is on average no worse than the
minimum fractional minimum cut. By the probabilistic method, there exists a value
0 where the (s,t)-cut has value at most this average. If not, then the average would
have to be higher. This establishes the existence of a minimum cut with cost equal to
the (s,¢)-minimum cost metric, and establishes the max-flow min-cut theorem. To
extract the cut, one can simply scan # over the interval (0,1) and check all n — 1
possible cuts. (In fact any 6 € (0, 1) will work; see exercise C.28.)

11.2 Sparsest cut

Let G be undirected, and let b : (‘2/) — R>( be a set of nonnegative demands. Given
a set S, the sparsity of S is defined as the ratio

c(6(5))
Sueswgs b(u,v)
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(For S =0 or S =V, we treat the sparsity of S as +00). The sparsest cut problem
is to compute the set S of minimum sparsity. An important special case is uniform
sparsest cut where the demands are uniformly b(u,v) = 1. Then the sparsity has the
simpler form

(5(5))
S|I3]

To minimize the uniform sparsity, we (of course) want to minimize the numerator
and maximize the denominator. Minimizing the numerator is to find small cuts (as
usual). The denominator (by AM-GM) is maximized by choosing |S| ~ n/2. So the
uniform sparsest cut is lookingfor a tradeoff between the capacity of the cut and how
“balanced” the cut is. (In fact, sparsest cut is used as a subroutine for the balanced
cut problem, as we will discuss.)

To drive this point further, observe that

c(0(5))  _ <(9(5))

1 _ 3 c(9(5))
n min{[S], [S[} — S]]

min{|S], |S}

IN

2
n

because n/2 < max{|S|,|S|} < n. That is, up to a constant factor, we are trying to
minimize the ratio

(5(5))
min{[S, ST}

Here we clearly see the expense of choosing a very small set S.

In this chapter, we describe a very influential result of Leighton and Rao [LR99]
that obtains a deterministic O(log(n)) approximation ratio for the uniform sparsest cut
problem. Their algorithm is based on applying region growing to the metric induced
by the dual LP. Given our interest in randomized algorithms, we first present an
alternative, randomized O(log(n)) approximation algorithm for general demands based
on {1-metric embeddings. We will also discuss lower bounds and some applications of
sparsest cut.

11.2.1 The LP

Leighton and Rao’s algorithm [LR99], as well as the randomized algorithm via metric
embeddings, are both based on rounding an LP relaxation of the sparsest cut problem.
However, since the sparsest cut optimizes a ratio, obtaining the linear relaxation is
not as obvious. As a step in this general direction, consider the following (nonlinear)
relaxation of the sparsest cut problem.

170



11. Li-metric embeddings and sparsest cut Kent Quanrud
11.2. Sparsest cut Fall 2025

Compute a metric d : V x V' — Rs¢ minimizing the ratio

Ze:{u,v} C<€)d(u7 U)
Z{u,v} b(u7 U)d<u7 U) '

Now, we can scale the distances up or down with no effect on the ratio. In particular,
we can fix the denominator to be 1, which gives the following optimization problem
which s a linear program.

Find the minimum c-cost metric such that the b-weighted sum of distances
is at least 1.

That is:
minimize Y ¢(e)d(u,v)
e={u,v}ek
over all metrics d: V x V — Rxg (11.4)

st Y b(s,t)d(s,t) > 1.
{s:t}

11.2.2 The dual LP and concurrent flow

To obtain the dual, it is helpful to rewrite (11.4) as a pure covering problem. Recall
the correspondence between metrics and edge lengths, via shortest path distances.
Then (11.4) is the same as:

Find the minimum cost edge lengths such that the b-weighted sum of
shortest path distances is at least 1.

To make this more explicit, for s,t € V, let P,; denote the family of all (s,t)-paths.
Let us define a path bundle as a collection of paths P consisting of an (s,t)-path
P, € Py, for every pair (s,t). We let P, £ [543 Pe¢ denote the family of all path
bundles. Then we can express the problem above as follows.

minimize »  c(e)y(e) over y : E — Rxg

eck (11 5)
st Y b(s,t) Y y(e) >1forall Pe P, '
{s,t} ecPs ¢

We can separate this LP by computing the shortest (s,t)-path for every pair (s, 1),
and verifying the covering constraint for this bundle of shortest paths.
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(11.5) covers path bundles with edges; thus, the dual packing LP packs path
bundles into edges.

maximize Y x(P) over z : P, — Rxg

Pep. (11.6)
st. > z(P) Y. b(s,t) <cle) forall e € E. '
PeP; {s,t}:e€Ps ¢

In (11.6), each path bundle P represents a choice of paths for every (s, t)-pair to
concurrently route the demands b. So (11.6) is trying to concurrently route b as much
as possible subject to the capacity constraints. This problem is called concurrent flow
or demand multicommodity flow.

11.3 Rounding via Li-metric embeddings

We now analyze an approach to rounding the sparsest-cut metric based on randomized
embeddings. This version readily generalizes to general demands b : (‘2/) — R>o.

Let d be any metric that is a feasible solution to LP (11.4). Our goal is to convert
d to a cut with sparsity comparable to the cost of d.

11.3.1 Rounding line embeddings

We first observe that some special cases of metrics are very easy to round — namely,
those related to line embeddings. Suppose there is a function f : V — R such that

d(u,v) = |f(u) — f(v)] for all u,v € V.

(Such a function f, placing V" on the real line, is called a line embedding.) Rescaling and
translating (which does not effect the sparsity), we may assume that min, f(u) = 0,
and max, f(v) = 1.

Consider the following random cut S (which we have seen before in proving
the max-flow min-cut theorem). Pick # € (0,1) uniformly at random, and let
S ={u: f(u) < 0}. Observe that for each edge e = {u,v}, we have

Ple € 6(5)] = |f(u) = f(v)] = d(u, v).
Thus we can rewrite the sparsity of d as

Spupper cu,v)d(w,v) B {Zeed(S) 0(6)}
Z{sﬂf} d(sv t)b(s> t) E [ESES,tES b(s, t)} ‘

(sparsity of d) = (11.7)
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Note that the RHS is not the expected sparsity of S. The expected sparsity of §S' is
the quantity

Elsparsity of S| = E[ Lees(s) €(€) ]

ZsGS,tGS’ b(87 t) 7

which is not the same as the quantities in (11.7). This is in contrast to our proof of
max-flow min-cut, where S is a minimum (s, t)-cut on average, and the existence of a
minimum (s, ¢)-cut follows immediately from the probabilistic method.

Still the probabilistic approach can be salvaged with a little more work. Observe
that S can only be one of n — 1 different sets Si,...,S,_1 where ) C S; C Sy C
S3-+- C Sp_1 € V. For each i, let p; = P[S = 5;]. Then

i= 1 pz 2665( s;) € (6)
EZL 11 Di ZsESi,tESz‘ b(s7 t)

Now we apply the following elementary fact. (The proof is left as exercise C.69.)

(11.7) =

Lemma 11.4. Let ay,...,ap,b1,...,b, > 0. Then
az >0 @ a;
g b bi.

It follows that for some S;, the sparsity of S; is at most the sparsity of d. In
conclusion, we have shown the following.

Lemma 11.5. Let d : (g) — R be a metric induced by a line embedding. Then one
can partition the vertices into two sets (S, S) such that

Sues 0) _ Spunpes o 0)d(u,0)
ZseS,tES b(S, t) n Z{s,t} d(“? ’U)b(S, t)

Rounding Li-metrics So much for metrics given by line embeddings. How about
a metric obtained as a sum of line metrics? Recall that the L;-metric on R" is defined

by

HSE _yHl Z’xl z

Suppose d was the L;-metric of an embedding f : V — R".That is,

d(u,v) = [[f(u) = f)ll, = Z!fx fi()]
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for a function f : V — R". We can think of this as the sum of h line metrics fi, ..., f5.
The sparsity of d expands out to

Z?:l Ee:{u,v} C(e> |f1 (u) - fl(v>|
Zzhzl Z{u,v} b(u7 v)|fz(u) - fl(v)|
Applying Lemma 11.4 again, we see that one of these line embeddings, say f;, has

sparsity no worse then d. From the line embedding f; : V' — R, we can extract a cut
with sparsity at most that of f;. This establishes the following.

(sparsity of d) =

Lemma 11.6. Let d : (‘2/) — R be the Li-metric over an explicit embedding of V.

Then one can partition the vertices into two sets (S, S) such that

Decs(s) cle) - D qupter c(u,v)d(u,v)
EsES,tES b(57 t) N E{s,t} d(“? U)b(sv t)
To sum up: L; metrics can be rounded without loss. We can find an Li-metric

with sparsity within a factor a of the sparsest metric d, then we can convert that into
an a-approximate sparsest cut.

11.3.2 Randomized L;-metric embeddings

We now know that L;-metrics can be rounded to sparse cuts without any loss. But
the LP for sparsest cut produces a generic metric d, that is not an L;-metric.

Our new strategy, given a generic metric d, is to try to find an L;-metric d; with
sparsity comparable to d. We then invoke Lemma 11.6 to round obtain a sparse cut
from d;. Our Li-metric d; will be defined by a mapping f : V — R" (for some h € N),
so that

dy(u,v) = [|f(u) = f()l;-
We will prove the following theorem.

Theorem 11.7. Let d : (‘2/) — Rx>¢ be a metric and § € (0,1). For h =

O(log(n)log(1/4)), one can construct a randomized embedding f : V. — R such
that for all u,v € V', we have

1f(w) = ()]l < Olog(1/0))d(u,v)

deterministically, and
Pll[f(u) = f(0)ll, < d(u,v)] <0 (11.8)
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For § = 1/poly(n) and h = O(log2 n), we can apply the union bound to (11.8)
over all pairs u,v. This gives the following theorem.

Corollary 11.8. Let d: (‘2/) — R be a metric and 6 € (0,1). For h = O(log2(n)),

one can construct a randomized embedding f : V — R such that with high probability,
for allu,v €V,

d(u,v) < [|f(u) = f()]l, < O(logn)d(u, v).

The embedding f : V — R" described in Corollary 11.8 is said to be a O(log n)-
distortion metric embedding as it maps points in one metric space into another while
preserving all distances up to a O(log n)-multiplicative factor.

The O(log n)-distortion embedding into L; is the last ingredient for the following
algorithm for sparsest cut.

1. Solve the LP (11.4) to obtain a sparsest metric d.

2. Invoke Corollary 11.8 to obtain a O(log n)-distortion embedding f :
(‘2/) — R" from d into the L;-metric. The L;-metric via f has sparsity
at most a O(logn) factor greater than d.

3. Invoke Lemma 11.6 to round the L;-metric to a cut with sparsity at
most the metric, which is a factor O(log n) greater than the sparsity of
d (and the optimum of (11.4)).

This algorithm is due to Linial, London, and Rabinovich [LI.LR95], and establishes the
following.

Theorem 11.9. There is a O(logn) randomized approzimation to (non-uniform)
sparsest cut (on undirected graphs).

Actually, Linial, London, and Rabinovich [LLR95] observed that one can do slightly
better when there are demands for only k& commodity pairs. (i.e., k pairs (u,v) with
b(u,v) > 0.)

Theorem 11.10. There is a O(log k) randomized approzimation to sparsest cut,
where k is the number of commodity pairs with nonzero demand.

This approximation factor is obtained by building on the ideas in Theorem 11.9,
and left as exercise C.21.

Now we describe the randomized algorithm of Linial, London, and Rabinovich
[LLR95] that computes the embedding in Theorem 11.14. We note that previously
Bourgain [Bou85] had obtained a deterministic embedding but the output dimension
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random-Fréchet(d: V x V — Rxg)

1. fori=1,...,[logn]

A. let S; sample each v € V independently with probability 27¢

B. foreachv eV

1. fi(v) ¢ mingeg, d(s,v)

2. return f:V — Rggg711

Figure 11.1: A O(log n) dimension, randomized Frechét embedding with O(log n) distortion

in expectation

Figure 11.2: Level sets by distance from a set of points S, encoding one coordinate of a

Frechét embedding.

h was exponential. Linial, London, and Rabinovich’s algorithm [LLR95] can be
interpreted as an efficient randomized implementation of Bourgain’s embedding

[Bou85].

The algorithm, which we call random-Fréchet, is extremely simple. We generate
[log n] coordinates. For i = 1,...,n, we sample a set S; where each point is sampled
independently with probability 1/2°. For each vertex v, we find the distance between
v and (the closest point in) S;. This gives the ith coordinate of v. Pseudocode is

described in Fig. 11.1.

Each coordinate of the randomized embedding is given by distances from a set.
There is a name for this class of embeddings: Fréchet embeddings. Fig. 11.2 attempts

to visualize a single coordinate generated in this manner.
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11.3.3 Low-distortion in expectation

We now turn to proving Theorem 11.14. Consider an instance of the random-Frechet

algorithm, which computes a randomized embedding f : V — RZ(*5(),

For ease of notation, for a vertex v and coordinate i, we let v; = f;(v) denote the
1th coordinate of the embedding of v.

Lemma 11.11. Foru,v € V andi € N, |u; — v;| < d(u,v).
, N
’ :
s

Proof. By the triangle inequality, we have both
d(s,u) —d(s,v) < d(u,v) and d(s,v) — d(s,u) < d(u,v).
for all s € S;. O

Lemma 11.11 implies that ||u — v||; < O(log n)d(u,v), since there are O(log n) dimen-
sions and each contributes at most d(u,v). The lower bound is harder: informally,
we want to show |lu — v||; > d(u,v), up to constant factors. This lower bound is too
strong; instead, we settle for the same inequality but only in expectation.

Lemma 11.12. For u,v € V, we have E[||lu —v||,] > cd(u,v) for some constant
c> 0.

Proof. For ease of notation, let § = d(u,v). For each i, let r; be the minimum length r
such that there are at least 2 points at distance < r from u, and 2° points at distance
< r from v; i.e.,

ri = argmin{|{x cd(u,z) < v} > 24 o s d(v,x) <} > 2’}

r>0

We claim that

For each index i, we have
|uir1 — vig1| > (min{r;,6/2} — min{r;_q,0/2})

with constant probability ¢ > 0.
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Before proving the claim, suppose it holds true. Let k be the largest index such that
ri—1 < 6/2 (for which the claim applies). We have

k
E[||u — U“ Z E[|wis1 — vig1]]
=0

(§ ¢y (min{r;, 0/2} — min{r;_1,8/2})

1=0

Q0
1

I\/v

as desired. Here (a) applies the claim and (b) is by telescoping sums and recalling
that Tht1 > 5/2
It remains to prove the claim. We have two cases: (a) r; < §/2, and (b)
rio1 < 0/2 < r;. We assume without loss of generality that r; is defined by u;
e, {z:d(u,c) <r}| <2

Case 1: r; <6/2. Let U ={x:d(u,z) <r;},and let V ={z:d(v,x) <r,1}. We
have |U| < 2" and |V| > 271, Since 1,1 < 1; < /2, U and V are disjoint.

Z
~ . 7. -

~
SNS——— < l\

R, Qi-l

S;41 samples each point with probability 277!, By direct calculation, S, samples
no points from U with constant probability, and at least one point from V' with constant
probability. Since U and V' are disjoint, whether any point from U is sampled and
whether any point from V' is sampled is independent. Thus S;,; samples a point from
V' and no points from U simultaneously with some constant probability ¢ > 0. In this
event, we have u; 11 > r; and v; 41 < 7r;_1, SO u;11 — Vi1 > T; — ri—1. In expectation,
we have

Efuiy1 — viga|] > e(ri —ric1),

as desired.
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Case 2: ;> 0/2>r;—y. Let U= {x:d(u,x) <¢§/2} (with §/2 in place of r;) and
let V={z:d(u,v) <ri_1/2}.

— \\
7 . .
/o A
/.
[
[
\
\ =
/. -
\\ . <a' // ZQ
S~

By the same argument as above, we have that S;;; samples a point from V and
no points in U with some constant probability ¢ > 0. In this event, u; 1 — v;11 >

5/2 —Ti=1. (]
Theorem 11.13. randomized-Frechet embeds V into RI8"l such that
llu—v||; < [logn|d(u,v) and E[||u —v||,] > cd(u,v) for all u,v € V,

for some absolute constant ¢ > 0.

11.3.4 Amplification

Theorem 11.13 shows that a single instance of randomized-Fréchet obtains O(logn)
distortion “in expectation”, so to speak, for each pair of vertices. In particular the
embedded distance is bounded above deterministically but below only in expectation.
We want to strengthen this so that the lower bound holds with high probability.

Theorem 11.14. With probability of error 1/ poly(n), the average of O(logn) em-

beddings produced by randomized-Frechet is an embedding V into RO(&*n) sych
that

cd(u,v) < ||lu—vl||; < Clog(n)d(u,v) for all u,v € V
for absolute constants ¢, C > 0.

Proof sketch. Fixu,v € V. We treat each coordinate difference |u; — v;] (for O(log2 n)
coordinates over O(log n) independent calls to random-Frechet) as an independent
random variable bounded above by d(u,v). The expected sum of the |u; —v;|’s is
Q(nlog(n)). By standard Chernoff inequalities, the sum is strongly concentrated at
the mean; scaling down by log n (from averaging) gives the desired result. O]
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11.4 Application: Minimum bisection

A bisection is a partition of the vertices V into (S,S) of (essentially) equal size:
|n/2] <|S],|S| < [n/2]. Alternatively a bisection can be defined in terms of cuts
as a set of edges whose removal leaves the graph with connected components of at
most [n/2] vertices each. In any case the minimum bisection problem is to compute
a vertex set S C V of size |S| = [n/2] minimizing the cost of the cut, ¢(4(.5)).

There is a natural connection between minimum bisection and the sparsest cut
— the minimum bisection problem can be recast as the restricting the sparsest cut
problem to vertex sets with exactly half the vertices.

The following algorithm uses a O(log n)-approximation for uniform sparsest to
obtain a bicriteria-approximation algorithm. In particular, it returns a (1/3)-balanced
partition (S, S) — that is, n/3 < |S| < 2n/3 — with cost at most O(log n) times the
cost of the minimum bisection. The algorithm is very simple. It repeatedly computes
the sparsest cut and removes the smaller side from the graph, until the number of
vertices removed is at least n/3 (and necessarily at most 2n/3).

1. Fort=1,2,...
A. S; + smaller side of a O(log n)-approximate uniform sparsest cut.
B. If [S1|U---UI[S;| >n/3
1. return (S;U---US;, V —(S1U---US;)).
C. Else remove S; and all incident edges form the graph, and repeat.

It is (relatively) easy to see why the algorithm returns a (1/3)-balanced cut; it
remains to show that the cost is comparable to that of the minimum bisection. The
intuition is as follows. Suppose for simplicity we have an exact algorithm for the
sparsest cut. The sparsest cut is very close to the minimum (weighted) expansion,
which we recall is the cost of the cut divided by the number of vertices on the smaller
side of the cut. In particular this ratio for the sparsest cut is no worse than that of
the minimum bisection. If the sparsest cut is balanced, then its cost is comparable to
the minimum cost bisection. While its not balanced, we can interpret the sparsest
cut as removing some vertices from the graph at the cost of the edges being cut. The
ratio of vertices removed per unit cost — the bang-for-buck, so to speak — is at least as
good. So we are gradually removing vertices while paying a favorable rate compared
to the minimum cost bisection.

There are some additional details to take care of — for one, the minimum bisection
in the input graph may no longer be a minimum bisection in the residual graphs,
although it will still be somewhat balanced as long as we haven’t removed n /3 vertices
yet. Also we only have a O(log n)-approximation for the sparsest cut, which will imply
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that we pay an additional O(logn) factor throughout the argument. Exercise C.29
guides the reader through a formal proof of the argument.

Theorem 11.15. In polynomial time, one can compute (1/3)-balanced cut with total
cost at most a O(log n)-factor greater than the minimum bisection.

11.5 Additional notes and materials

One can do better than a O(log n) approximation for uniform sparsest cut — Arora,
Rao, and Vazirani [ARV09] gave a O(,/log n) via semi-definite programming and
ideas from high-dimensional geometry. We may discuss this result later in the course;
in the meantime we refer the reader to lecture notes by Rothvoss [Rot16].

Lecture materials. Click on the links below for the following files:
o Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

11.6 Exercises

Exercise 11.1. Recall the randomized rounding based proof of the max-flow min-cut
theorem. Recall that we analyzed a random cut which was based on a threshold
0 € (0,1) chosen uniformly at random. Prove or disprove that for (essentially) all
6 € (0,1), the corresponding cut is a minimum {s, t}-cut.

Exercise 11.2. In most textbooks, max flow is presented as the following LP, which
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in particular has polynomial size in the input graph G.

maximize Y ze— Y. z over z: E — Ry

e€dt(s) e€d(s)
s.t. ze <cle) foralle € E (11.9)
Y ze= Y zcforallveV\({s,t}.
ecdt(v) e€d—(v)

The second set of constraints are called flow conservation constraints. Show that the
above LP is equivalent to the (fractional path packing version of) (Max-Flow) in the
following sense.

1. Show that for every (feasible) fractional path packing P, there is a feasible
solution z to (C.2) with the same objective value.

2. Show that for every feasible solution z to (C.2), there is a feasible path packing
P with the same objective value.®

Exercise 11.3. Prove Lemma 11.4.

Exercise 11.4. Recall the randomized O(log n) approximation algorithm for sparsest
cut based on Li-embeddings. Note that this is also logarithmic in the number of
demand pairs, (5). We consider the case where the demands are sparse; more
precisely, where there are at most &k commodities (i.e., pairs) {s,¢} with nonzero
demand b(s,t) > 0.

1. Prove the following extension of Theorem 11.14:

Letd:V xV — Rso, and let T C 'V be a subset of points with ¢ = |T.
Then for h = O(log2 E), one can compute a randomized embedding
f:V = R" such that:
(a) For allu,v € V., [[f(u) — f(v)]; < O(log £)d(u,v) (always).
(b) With high probability, for all s,t € T, ||f(s) — f(t)||, > d(s,t).
2. Describe (rigorously) how to adjust the algorithm and analysis from Section 11.3
to obtain a randomized O(log k) approximation factor, where k is the number
of commodities with nonzero demand.

8The second problem is trickier than the first. One should be able to prove it using only the ideas
and results in this chapter (without retracing the flow algorithms of ensuing chapters).
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Exercise 11.5. Recall the bicriteria approximation algorithm for the minimum
bisection problem from Section 11.4.

1. Show that the algorithm returns a 1/3-balanced cut.

2. For each iteration i, w/r/t the graph remaining at iteration 7, we have

c(0(S;)) OpT
‘ST < OOOg(n))T-

3. Combine the two parts above to prove that the algorithm returns a 1/3-balanced
cut of size O(log n)OPT.

Exercise 11.6. One can also consider the bisection problem in directed graphs. Here
the goal is to find a vertex set S of size |n/2] < |S| < [n/2] minimizing the cost of the
directed cut ¢(67(5)). Suppose one had access to a O(log n) approximation algorithm
for uniform directed sparsest cut (as described in ??7). Using this as a subroutine,
design and analyze an algorithm that obtains a bicriteria approximation algorithm
for the minimum directed bisection problem with essentially the same approximation
bicriteria for the undirected setting: compute a set S with n/3 < |S| < 2n/3 with
cost ¢(01(9)) at most a O(log n)-factor greater than that of the minimum directed
bisection.
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Chapter 12

Tree Metrics

12.1 Introduction

Many flow and cut problems are ultimately about paths, whether packing paths in
flow, cutting paths in cuts, evaluating shortest paths in fractional cuts, etc. Obviously
there are many paths between any two points in a graph and this makes all these
problems nontrivial. An extremely simple setting, then, would be a graph where
there is a unique path between any two vertices: by definition, a tree. Many graphs
problems become trivial in a tree. Here we will study a bold approach to graph
algorithms based on this idea: process the input graph G to produce a tree T' that
preserves its salient properties, solve the problem on 7', and lift the solution back
to G. Of course a tree T cannot preserve all of GG, so we will only preserve specific
properties and only approximately at that, in such a way that is appropriate to the
problem at hand.

In this discussion, we will focus on preserving the shortest path metric of a graph.
Let G be an undirected graph, and let dg denote the shortest path metric in G. Let T
be a spanning tree of T' (with the same edge weights), and let d denote the shortest
path metric in 7. (Of course, the shortest path in 7" is also the only path.) Ideally,
we want dp(u,v) to resemble dg(u,v) as much as possible for each edge e = {u,v}.
In general, we have

dg(u,v) < dp(u,v) for all u,v € V

simply because T' is a subgraph of G. For an edge e = {u,v}, the stretch of e is
defined as the ratio

dr(u,v)
tretch e) &~
(stretch e) do(u.0)

We say that dr has uniform stretch (at most) «, for a > 1, if every edge has stretch
at most a.
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A natural goal is to obtain a spanning tree with small uniform stretch. However
the n-vertex cycle C,, presents a lower bound of n — 1. Indeed, any spanning tree 7'
of C,, is obtained by dropping one edge e; this edge e is stretched around the cycle, so
to speak, and has stretch n — 1.

The n-vertex cycle C,, indicates that we cannot, in the worst-case, find spanning
trees with uniform stretch better than n — 1. (We leave it as exercise C.34 to obtain
a matching upper bound.) The rest of this chapter discusses two different approaches
that obtain better bounds for relaxations of this problem.

Low-stretch spanning trees. Alon, Karp, Peleg, and West [AKP+95] showed
how to compute a spanning tree 7" where the average stretch among all edges is n°™,
in the sense that

1

7] > (stretch e) < n°®

eckE

Dominating tree metrics. Bartal [Bar96; Bar98] ignored the requirement that T
is a spanning tree of G; more generally he sought auxiliary trees 17" where the vertices
of G correspond to the leaves of T, while retaining the property 1" that dr > dg. He
produced randomized trees where for each edge the average stretch was polylog(n):

g)[(stretch e)] < O(polylog(n)) for all e € E.

Note that this a different sense of “average stretch” then above. We will present
an algorithm of [FRT04] building on [Bar98] to obtain (per-edge) average stretch of
O(logn).

12.2 Low-Stretch Spanning Trees

We first present the low-stretch spanning trees of [AKP+95]. Here we recall that we
want to compute a spanning tree with low stretch on average over all the edges.
Suppose our goal was to obtain average stretch (roughly) D for a parameter D > 0.
Let us partition the graph in vertex-disjoint subgraphs each with radius at most D /2
from some center vertex, and compute a shortest path tree from each center. Then
every edge within a neighborhood has stretch at most D; it remains to address the
edges that are cut by the partition. We can try to address these edges recursively
by contracting every subgraph/subtree into a single vertex, leaving a multigraph G’
consisting of the cut edges, and recursing on this graph. This produces a tree 7" on
the contracted multigraph G’; expanding out the vertices of 7" by the underlying
shortest path trees gives a spanning tree T'. Recursively, we might expect that every
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[AKP+95] algorithm for m°M-average stretch spanning trees:

1. Compute a low diameter decomposition: repeatedly, until no vertices remain:

A. Select a remaining vertex v and compute a shortest path tree of v in the
remaining graph.

B. Remove the set C, all vertices (remaining) in V' within some distance
D’ < D such that

0(Cy)| < O(log(m))(1 + |E[CL]])

where E[C,] denotes the set of all (remaining) edges incident to some
vertex in v.

2. Recurse: Let G’ be the multi-graph obtained from the input graph by
contracting each C, to a single vertex. Recurse on G’ to obtain a spanning
tree T', and return the tree T obtained by replacing each C, with the
corresponding shortest path tree.

edge cut edge e has stretch O(D) in T”, but this expands out to stretch O(D?) with
respect to T because passing through a vertex in 7" actually corresponds to traversing
a path of length O(D) in the underlying tree.

So we have a problem where each step of the recursion induces an additional factor
of D. Now, recall that we want to preserve average stretch. Let f(m) be the stretch
obtained by the recursive approach. We have

f(m) < D(# internal edges) 4+ (D + 1) f(# external edges).

Studying this recursion, we can see that if the number of external edges was extremely
small, then we might hope that it can offset the extra factor of D. How can we
minimize the number of exteneral, or cut, edges? Region growing! Low diameter
decompositions!
If we partition the graph by region growing techniques, we can ensure that
O(log m)

(# external edges) < —p M

This revises the recursive bound as

f(m) < Dm+ (D +1)f(clog(m)m/D)
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for a constant ¢ > 0. For D = eVee(m/loglogm the recursion is bounded by f(m) =
eo( viogmios oz m> (The calculations are given below.)

Theorem 12.1. The AKPW algorithm returns a spanning tree with average stretch
O(V/ogmiogiogm)

Solving the recurrence. We have

f(m) < Dm+ (D +1)f(colog(m)m/D)

where € = ¢qlog(m)/D for a constant c¢g. The height of the recursion is

h = O(lOgD/co log(m) m) = O(log(m)/log(D/cylog(m))) = OGZ?EZ;)

assuming D = Q(log m). Unrolling the recursion gives
h .
F(m) <O(Dm) S ((1+ 1/D)cylog(m))’ < DmeChleslosm),
1=0

To minimize the RHS, we can instead minimize the logarithm of the RHS, log(m) +
log(D) + O(hlog log m). Choosing D to make the last two terms (roughly) equal, we
have

log(m) log log(m)
log(D) ’

log(D) =

hence

log(D \/log ) log log(m).
Then D = eVes(mloglog(m) giyag

f(m) < meO( log(m) log log(m))

as desired.
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12.3 Hierarchical Tree Metrics

The [AKP+95] algorithm was able to obtain low stretch in total. This means that a
few unlucky edges might have extremely high stretch. In this section we want every
edge to have low stretch, in some sense. Unfortunately we already know that it is
impossible to guarantee o(n) stretch for every edge simultaneously. But a different
possibility opens up when we allow for randomization. Perhaps we can output a
randomized tree T, such that for each edge e, the expected stretch of e is o(n). Such
a claim does not contradict the lower bound for the n-vertex cycle; in fact, one can
get constant expected stretch for the cycle which we leave as exercise C.67.

To build some intuition, let us start from the [AKP+95] algorithm for inspiration
(even though ultimately we will not produce a spanning tree). A high level goal is to
inject randomization so that every edge has a decent chance at having low stretch.
To this end there are at least two natural ways to introduce randomization into
[AKP+495].

1. We can make the radii of the clusters randomized, instead of a deterministic
function of the total number of edges cut.

2. Second, the order of vertices that center the clusters can be randomized, which
would seem most equitable.

Both of these ideas will be reflected at a high level in the following algorithm which
we now present.

The algorithm we present will produce a randomized hierarchical tree metric over
V. This means that the tree T will be rooted, with V' at the leaves, and the edges
between height ¢ and height i — 1 have length o for a fixed constant «.. Here we choose
a = 4 to simplify calculations, though we note that o = 2 is more common, and the
analysis can be adjusted to accommodate any fixed constant. The convenience of
a hierarchical tree T is that the tree distance dp(u,v) is entirely determined by the
height of their least common ancestor, and within a constant factor of the biggest
edges at the top of the corresponding subtree. This additional structure turns out to
be useful for several other problems.

We now present [FRT04]’s randomized algorithm. We assume the input is an
edge-weighted graph where the minimum edge length is normalized to 1. We let
D = max,,, d(u,v) denote the diameter of the graph. Below we describe the algorithm
in detail and first we give a high level description. For every radius of the form o4’
we are randomly scooping out balls of size a4’, where a € [1,2] is drawn uniformly
at random, and the vertices at the center of the balls are in random order. A key
and subtle point is that we use the same (random) « and ordering for every i. the
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intersections of these balls (across i’s) induce a laminar family of sets over V' which
are arranged as a tree.

[FRT04]’s algorithm producing a randomized hierarchical tree
metric.

1. Let vy, ..., v, be a uniformly random ordering of V. Let L = [log, D].
Let a € [1,2] be drawn uniformly at random.

2. For i from L down to 0,

(a) For each vertex v; in order,
i. Let C;; be the set of vertices at distance at most a4 from
v, excluding any vertex already included by the cluster of a
previous Cj ;.

3. We use the C; ;’s to arrange the vertices as leaves in a tree 7' hier-
archically as follows. For each intermediate node x at height i, the
leaves in the subtree rooted at x corresponds to a set of vertices with
diameter at most 4°. The root at height L + 1 corresponds to V.
The nodes at height L correspond to the clusters Cr ;. In general,
for a node x at height i corresponding to a set S C V/, its children
correspond to the (nonempty) intersections of S with clusters Cy;.
(Here a cluster center v; may not be in S.) Observe the leaves (at
height 0) each correspond to a single vertex V because Cy; = {v;}
for all j. Each edge descending from height i is given weight 4°.

So much for the algorithm. Here, then, is the key claim.

Theorem 12.2. [FRT0}]’s algorithm produces a randomized hierarchical tree T such
that for each edge e, E[(stretch e)] < O(logn).

To prove the theorem, fix an edge e = {u,v}. Recall that dy(u,v) is decided,
up to a constant factor, by the height & where u and v are first separated. (Then

d(u,v) = 0(4"“').) When this occurs, u and v are separated in particular by a cluster

of radius a4* centered at some vertex w; in this event, we say that w “contributes”
4% to d(u,v) (which upper bounds the diameter of the remaining vertices). By this
terminology, we have

dr(u,v) <Y O(1)(contrib. of w to dr(u,v)). (12.1)
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Now, fix a vertex w. Suppose that w was the ¢th closest vertex to u or v (i.e., with
respect to min{d(w, u),d(w,v)}). The key lemma, which we analyze below, is that

El[contrib. from w to dr(u,v)] < O(1/0)d(u,v).

Taking expectations of Eq. (12.1) and applying the bound above to each w gives
O(log n) stretch, as desired.
It remains to prove the key lemma, as follows.

Lemma 12.3. Let w be the (th closest vertex to w or v. Then
E[contrib. from w to dr(u,v)] < 4d(u,v)/l.

Proof. We assume without loss of generality that w is closer to u than v (i.e., d(u, w) <
d(v,w)). We first observe that w contibutes to dy(u,v) only if the following two
events both occur.

By d(w,u) < a4k < d(w,v) for some k.
FE5: w is ordered before any of the ¢ — 1 vertices that are closer to u or v.

Indeed, the necessity of the first condition is clear. The second is necessary because
any closer vertex would otherwise cluster either u or v (or both) before w.

We also observe that the above conditions are independent, since the first event
depends (only) on « and the second event depends on the random ordering, which
are independent. It is also clear that the second event F, occurs with probability 1/¢.
It remains to analyze F;. We have two cases.

Case 1: d(u,v) > 4d(w,u). Then for any k satisfying the inequality in Fy, this
inequality and the triangle inequality imply that

4R < 2d(w,v) < 2(d(w, u) + d(u,v)) < (5/2)d(u,v).
Thus the contribution from w is at most O(d(u,v)). It follows that
E[contrib. from w to dp(u,v)] < 2.5d(u,v) P[Es] = 2.5d(u,v) /¢,

as desired.

Case 2: d(u,v) < d(w,u). We first note that there may not be any k in Item £
satisfying inequality F; if not, then the claim is immediate. Henceforth we assume
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such a k exists. We claim that the choice of k is unique. Indeed, suppose there exists
some choice of k and « € [1, 2] such that the inequality in £ holds. We have

d(w,u) > d(w,v) — d(u,v) &

> 4% — 4k /2 > 2. 41

which rules out smaller values of k. Here (a) is by the the triangle inequality and (b)
is by assumption on «. To rule out larger values of k, we have

d(w,v) < d(w,u) + d(u,v) < 4"

by similar reasoning.
Thus the choice of £ in £ is unique; fix k as such. Now we have

[[d(w,u), d(w,v)]| © d(u,v)
PlEy] < |[4k, 2 - 4F]| < Ak

by (c) the triangle inequality. Thus
Elcontrib. from w ...] < 4" P[E]P[E,] < 4d(u,v) /¢,
as desired. O

Remark 12.4. When we apply this algorithm on the shortest path metric of a graph
G = (V, F), we may also want, for every pair of vertices u, v, a walk wr : u ~» v in G
of length at most dr(u,v). To this end, when computing 7', observe that each “cluster
center” corresponds to a vertex v, and when we have cluster with center v and a child
cluster with center v, the underlying metric implies a path from u to v with length
at most the length assigned to the auxiliary parent edge between the clusters. Thus,
given two vertices u and v, we can take the unique path between the leaves u and v
in T, and concatenate the underlying walks in GG to get a walk from u to v in G with
length at most dr(u,v).

12.4 Additional notes and materials

Lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.
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Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

12.5 Exercises

Exercise 12.1. Design and analyze an algorithm that computes a spanning tree with
uniform stretch n — 1 (matching the lower bound induced by the cycle).

Exercise 12.2. For the n-vertex cycle C,,, describe a randomized tree metric where
cach edge has expected stretch O(1).

Exercise 12.3. Prove that the O(logn) bound is tight for tree metrics (up to
constants).

Exercise 12.4. Recall that the low-stretch spanning tree of [AKP-+95] obtained
average stretch n°"). We consider extensions to the weighted average. Let w(e) € Rsg
be a positive weight for every edge, and let W = > . w(e) be the total weight. We
assume for simplicity that the weights are between 1 and poly(n). We still treat the
edges as unit length edges. Design and analyze and algorithm to compute a spanning
tree 1" such that

1
W 3" w(e)(stretch e) < n°b.

ecE

Exercise 12.5. Show how to use the randomized tree metric to randomly round the
sparsest cut LP and obtain a O(log n)-approximation for sparsest cut.

Exercise 12.6. The following problem, called the buy-at-bulk network design problem,
models the situation where you are building out a network that supports communi-
cation between various terminal pairs with minimum total cost, with “economies of
scale” built into the cost function.

Formally, we have an undirected graph G' = (V, E') with edge lengths ¢ : E'— Rxo.
There are k terminal pairs (s1,%1),. .., (sk, tx), each associated with a demand d; > 0.
The high-level goal is to choose a walk w; : s; ~» t; for all ¢ minimizing the “cost” of

1T]ry to prove tree metrics are also Li-metrics.
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buying enough capacity of each capacity to route all these paths simultaneously. To
model the cost, we are given a monotone subadditive function f : R>o — R0, and for
each edge, we pay f(u) for capacity w per unit length. Montone means that f(u) is
nondecreasing in u. Subadditive means that f(u; +ug) < f(uy) + f(uz) for u,v > 0.
Now, each edge must have enough capacity to route all the demand of all the paths
using it. Thus the total cost of a selection of paths {p; : s; ~t; i =1,... k} is

Zf(e)f( Z di)-
eckE RES

This problem is NP-Hard, so instead we will try to approximate it. Our goal is to
design and analyze a polynomial time approximation algorithm for the buy-at-bulk
network design problem.

We will use the randomized tree metric of Section 12.3. The algorithm is as
follows. We first compute a randomized tree metric dp, with underlying weighted tree
(T = (Vr, E7), by : Er — Rxg), over the shortest path metric of G with respect to /.
Treat T as a graph with edge lengths ¢, and mapping the terminal pairs (s;,t;) to
the corresponding leaves of T', we solve the buy-at-bulk network design problem over
T with the same cost function f. We then map this solution back to walks in G and
return this solution.

To elaborate on the second point, recall that every edge node in T is associated
with a cluster centered at some vertex in G. Each edge e in T is supported by the
shortest path in G' between the vertices associated with the endpoints of e. Denoting
this path by P, for e € Er, we have ¢(P,) < {r(e). In this way, every path P in T
maps to a walk W in G obtained by concatenating the walks supporting the (tree)
edges in P.

We break down the analysis into the following steps.

1. Design and analyze an algorithm that solves the buy-at-bulk network design
problem exactly in a tree. (This shows that the first step is exact.)

2. Describe a mapping from solutions in G to solutions in the randomized tree
metric 7" such that for a fixed solution in G, in expectation (over T'), the cost of
the mapped solution in 7" is at most a O(log n) factor greater than original cost

in G.

3. Show that for every solution in 7', there is a solution in G where the cost in G
is at most the cost in 7'

4. Combine the three parts above to prove that the randomized solution returned
by our algorithm has expected cost O(log n) OPT.
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Chapter 13

Sampling geometric range spaces

13.1 Introduction

Many problems in computational geometry take place in the context of a range space.
A range space (P, R) consists of a collection of points P and a family of ranges R,
which are subsets of points. (P and R need not be distinct or finite.) For example, P
may be a collection of n points in R?, and R may be the family of all closed discs in
R2. Typical queries, for a given r € R, include:

1. Is r empty?
2. How many points does r contain?

3. Does r contain at least an e-fraction of P, for given €?

Extensions of this model include weighted points and ranges, or a distribution over
points instead of a finite set. We focus on the unweighted and discrete setting for
simplicity.

For a fixed range space (P, R) with P finite, we define the measure u(r) of a range
r € R as the fraction of all the points it contains:

B lr N P|

One can interpret u(r) as the probability that a random point from P likes in 7.

This chapter is about small random samples from P that still approximately
preserving the measure of every range r € R, for a broad and geometrically natural
class of “low complexity” range spaces (to be defined later). To formalize this, for a
set of points @, let pg denote the measure with respect to Q:

_rn@|
MQ(T)_ |Q| :
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We say that @ is an e-sample for (P, R) if it approximates the measure up to an
e-additive error; that is, rb

lp(r) — po(r)| < eforall r e R.
@ is an e-net if it hits all ranges with measure at least e:
po(r) > 0 for all r € R with p(r) > e.

Note that an e-sample is stronger than an e-net. e-nets are useful in situations where
you want to identify “heavy-hitter” range spaces.

Computing a small e-sample is impossible with no restriction on R. For example,
suppose R = 2% is the family of all subsets of P. Then for any proper subset Q C P
with |Q| < (1 —¢€)|P|, @ cannot be an e-sample because in particular it will fail for
the range r = P\ ). For the same reason, any e-net () of P must have at least
(1 —€)|P| points.

For a subset of points @ C P, let

RAQ={rn@:r e R}

denote the family of subsets of @) induced by R. For many natural range spaces,
especially in low-dimensional geometry, R A Q is a very small subset of 2¢. Above we
mentioned the setting of disks in the plane. The intersection of a disk with the point
set () gives a subset of (), but in general, disks cannot induce all possible subsets of
a set of points. In fact, consider 4 points arranged in a square. It is impossible to
take a disk and overlay it so that it only covers two opposite corners of the square.
Thus disks are inherently of limited complexity, and we hope to leverage this when
sampling.

One way to model this complexity is via the growth function. The growth function
g : N — N models the maximum cardinality of R A @ as a function of |Q|. For k& € N,
g(k) is defined by

g(k) Emax{|RAQ|: Q C P, |Q| <k}.
(P, R) is said to have polynomial growth of degree d if
g(k) < O(k").

For example, disks in the plane have polynomial growth of degree 3 (as we prove in
Section 13.3). The family of closed halfspaces in R? have polynomial growth of degree
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d + 1. There are several ways to establish whether a range space has polynomial
growth, via parameters such as the VC-dimension (Section 13.3) and the shattering
dimension (see [Harl8b]).

Now, let (P, R) be a range space with growth function g(n). Let €,0 € (0,1), and
let Q C P be a random sample of P. We want to understand how big () should be so
that it is either an e-sample or an e-net with probability at least 1 — 9.

A straightforward approach to this question is to apply the following additive
Chernoff bound.

Theorem 13.1. Let X,,..., X, € [0,1] be independent, n = E[X; + --- + X,,]/n and
e > 0. Then

PIL(Xy 4+ +X,) >+ ]
PL(Xi+ -+ X)) <p—¢

6—26271.

The proof, which is similar to that of the multiplicative Chernoff bound, is deferred
to Section 13.A.

Suppose we want an e-sample for the range space (R, P) with growth function
g(n). Let @ C P be a random sample (with repetition) of & points and let ;1 be the
corresponding measure. Fix a range r and consider pq(r). We have E[ug(r)] = u(r).

Write
1

where X; = 1 if the ith sampled point lies in r, and 0 otherwise. Thus

Pllaq(r) = #(r)] 2 = P[| L (Xy -+ + Xe) = (1)

Now, there are effectively at most |R A P| < g(]P|) distinct ranges we want to preserve.
For a given parameter § € (0,1), and k = log(g(|P|)/25)/e* we have

> e] < 2e<F.

P[Q is not an e-sample] %) > Pllpo(r) — pu(r)] > e <|RAP|- 0

<4
rERAP 9(|PD

by (a) the union bound. That is, log(g(|P|)/2d)/€* points suffice to give an e-sample
with probability at least 1 — . For example, for disks in the plane, we need to sample
O(log(|P|)/2€*) points to obtain an e-sample with constant probability.

Meanwhile, for e-nets, one can show a random sample of size O(log(g(|P]))/e)
is an e-net with constant probability in a relatively straightforward fashion. (See
exercise C.50.)
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It turns out that one can do much better than these initial bounds, and surprisingly,
remove the dependence on |P| entirely. These stronger sampling bounds, called the
e-sample theorem and e-net, are the main topic of this chapter. For e-samples we have
the following [VCT71].

Theorem 13.2. Let (P, R) be a range space with growth function g(n), and let
6,0 € (0,1) be given. Let ¢ € N such that

(> Clog(g(20)/6) /€

for a universal constant C'. Then a random sample of { points with repetition from P
is an e-sample with probability at least 1 — 0.

For polynomial growth we have:

Corollary 13.3. Let (P, R) be a range space with polynomial growth function g(n) =
O(nd), for fized d, and let €,0 € (0,1) be given. Let ¢ € N such that

0> g(dlog(d/e) +log(1/9)),

for a universal constant C'. Then a random sample of  points with repetition from P
is an e-sample with probability at least 1 — 9.

We prove Theorem 13.2 in Section 13.2. Note that |@] is independent of |P|. For
e-nets an even smaller sample suffices [HW87]:

Theorem 13.4. Let (P, R) be a range space with growth function g(n), and let
€,0 € (0,1) be given. Let £ € N such that

t=> Clog(g(20)/0)/e€

for a universal constant C'. Then a random sample of ¢ points with repetition from P
is an e-net with probability at least 1 — §.

For polynomial growth we have:

Corollary 13.5. Let (P, R) be a range space with polynomial growth function g(n) =
O(nd), for fized d, and let €,0 € (0,1) be given. Let ¢ € N such that

‘> f(dlog(d/e) +log(1/5)),

for a universal constant C'. Then a random sample of ¢ points with repetition from P
is an e-net with probability at least 1 — 0.
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The proof of Theorem 13.4 is similar to the proof of Theorem 13.2; and left to the
reader in exercise C.53.

We mention that the theorems above can be formulated in a continuous setting,
where instead of a finite point set P, we have a distribution D of points. Here the
measure p(r) of a range r is the probability of a point drawn from D lying in . The
proofs of the e-sample and e-net theorems presented here extend immediately to these
settings. We focus on the discrete setting as it captures the essential ideas while being
simpler to discuss.

13.2 Proof of the e-sample theorem
In the section we prove the e-sample theorem. We first restate the theorem for the
reader’s convenience.

Theorem 13.2. Let (P, R) be a range space with growth function g(n), and let
6,0 € (0,1) be given. Let ¢ € N such that

0> Clog(g(20)/0)/€

for a universal constant C'. Then a random sample of { points with repetition from P
is an e-sample with probability at least 1 — 9.

Proof. Let A be the event that (; is incorrect for some r € R.

def

A = the event that |uy(r) — u(r)| > € for some r.

We want to show that P[A] < 6.
Let Q2 be a second, independent random sample of the same size. Define B by

B = the event that |us(r) — pi(r)] > €/2 for some r € R.

Define ' = A A B as the event where the conditions of events A and B hold
simultaneously for the same r € R; i.e., |[u1(r) — u(r)| > € and |pu1(r) — pa(r)| > €/2
for some r € R.

We claim that P[A] < 2P[B]. To this end, we first write

P[B] > P[C] = P[A, C] = P[C | A] P[A]. (13.1)

Now, in event A, a range r is incorrectly measured by (); by more than e. That
particular range r is correctly measured by (2 to within €/2 with probability at least
1/2 by the additive Chernoff inequality. In this case we have

|a(r) = pa(r)| = [(r) = pa(r)] = |palr) = pa(r)] > € = €/2 = ¢/2,
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hence event C'. Thus P[C'| A] > 1/2, which gives P[B] > P[A]/2 when plugged into
(13.1).

Thus an upper bound on P[B] gives an upper bound on P[A] up to a factor of 2.
To upper bound P[B], suppose we generate (); and Q)2 alternatively as follows.

1. Sample 2k points Q) from P.
2. Randomly partition )y in half. Let (); be one half and let ()5 be the
other.

Since

P[B] = QZP[QO] P[B | Qo] < I%SSXP[B | Qol,

it suffices to upper bound the probability of B conditional on Q).

Fix Qy. Observe that the restricted range space (Qq, R) has at most m = g(2¢)
distinct ranges over Qg (!).

Let po be the measure with respect to g. For each r, we have

Pllpa(r) = po(r)| = €/4] < 4(;
as well as
0
Pllpa(r) — po(r)] > €/4] < e

by the additive Chernoff inequality. By taking the union bound over all m distinct
ranges over Qo we have |y (r) — po(r)| < €/4 and |us(r) — po(r)| < e/4 for all r € R
with combined probability of error at most /2. In this case we have

1 (r) = p2(r)| < [pa(r) = po(r)| + |p2(r) = po(r)] = €/2
for all r € R; i.e., event B does not occur. Thus P[B] < §/2, completing the proof. [J

13.3 VC dimension

We have shown that very few points are needed for e-samples and e-nets when the
range system (P, R) has small (e.g., polynomial) growth g(n). But how do we bound
the growth function? One way to do this is via a property called the VC dimension
of (P, R).

For Q) C P, we say that R shatters () if the family of projections R A () induces
all 219! subsets of Q.

The VC dimension of (P, R) is the maximum cardinality |Q| of any shattered
subset ) C P.
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Intervals. Let P be the real line R, and R the family of intervals on R. Any two
points can be shattered by intervals, but given any three points a < b < ¢, it is
impossible to induce the set {a, b} with an interval.

Disks Let P be the plane R?, and let R be the family of closed disks. Any three
points can be shattered by disks. Consider a set () of four points. We have two cases.
In one case, one of the four points is contained in the convex hull of the others.
Then it is impossible to find a disk that covers the three outer points without including
the point in their convex hull, since disks are convex. (In general, any set of points
that are not in convex position cannot be shattered by range spaces of convex shapes.)
Now suppose all four points are in convex position. Call these points {a, b, ¢, d}
in order along the convex hull. If we had two disks D; and Dy that induced the
“opposite” pairs {a,c} and {b,d}, respectively, then the boundaries of D; and D,
would intersect at four points. But two circles can only intersect at two points.

Halfspaces. Let P =R?, and let R be the set of closed halfspaces:
R={{zeR": (a,z) <b}:a €R,bER}.
Here we have the following fact.

Theorem 13.6 (Radon’s theorem). Let Q be a set of d + 2 points in RY. Then one
can partition Q into two sets Sy U Sy, such that conv(Sy) N conv(Sy) # (.

Radon’s theorem implies that the VC-dimension is at most d + 1. Indeed. if @
had d + 2 points, then partition @ = S; U Sy as in Radon’s theorem. If a halfspace H
contains Sy, then it also contains a point in the convex hull of S;. But then it H must
also contain at least one point from S5. Thus it is impossible to have H N Q) = S;. To
show that VC-dimension is exactly d + 1, one verifies that the regular simplex in R?
with d + 1 vertices can be shattered by half spaces.

13.4 Sauer’s lemma

Sauer’s lemma connects VC-dimension to the sample techniques from the beginning
of our discussion. It states that range spaces of fixed VC-dimension have polynomial
growth, hence samples proportional to the VC-dimension (and independent of the
number of points!) give e-samples and e-nets.

Theorem 13.7. Let (P, R) be a range space of VC-dimension dy.. Then (P, R) has
growth function

2§ (0) <o

i—0 \?
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Proof. Define f(dye,n) = 20 (’:) We prove that g(n) < f(dye,n) for all dy. and
all n by induction on n and dy.. Clearly g(n) < f(dyc,n) when n =0 or dy. = 0.

Let Q C P have n points and fix a point p € ). Without loss of generality we
may assume that each range is a subset of (), that is,

rC Q@ forall reR.

(Otherwise replace R with R A Q.)
Now, the high level idea is to reduce to range spaces over ) — p, and apply
induction to each. Let

SERAQ—-p) ={r—p:recR}

i.e, we project R onto () — p we take each range r and by removing p from each range.
Of course |S| < |R|. |S| may be smaller because two ranges may project r1,72 € R to
the same range in ) —p; i.e., 1y —p = ro — p. This occurs iff r; =ry+por ro =11 +p.

We make a second set of ranges T" over () — p that consists of the projections that
had two preimages in the projection; i.e.,

T'={seS:seR, s+pe R}
We have |R| = |S| + |T.

Now, S has VC-dimension at most d because removing a point cannot increase
the VC-dimension. Consider T'. If T shatters a point set X C ) — p, then R shatters
X + p, since for every r € T, both r € R and r +p € R. It follows that T has
VC-dimension d — 1.

By induction, we have

Moreover,

Fldee 11+ (e —1) = 3 (” N 1) + dz (” ; 1)

1=0

dye dy

¢ fn—1 Ve fn—1
_¢1<i_1>+§< i )
@ XL (n
< <> = f(dvmn)»

as desired. To see (a), observe that the RHS counts the number of subsets of size i
from a universe of n points. The LHS counts the same collection by counting the
number of such sets that contains a given point in the first sum, and counting the
number of such sets that omits a given point in the second sum. O
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13.5 Additional notes and materials

See [Har18b; Harl1] for additional background on geometric sampling and complexity,
including another notion of geometric complexity called the shattering dimension
which is omitted here. [Harl8b; Harll] also describes an interesting connection
between geometric sampling and discrepancy.

Lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

13.6 Exercises

Exercise 13.1. Provide directly (and without leveraging the techniques from Sec-
tion 13.2) that sampling O(log(g(|P|))/€) points gives an e-net with constant proba-
bility.

Exercise 13.2. This exercise asks you to prove the e-net theorem, Theorem 13.4.
One can prove it similarly to the e-sample theorem, Theorem 13.2. Below we define
the events A and B for you to get you started, and ask you to complete the proof (in
full detail).

Let @1 and Q2 be two random samples of points (of appropriate size, TBD
by you) inducing measures p; and pg, respectively. Define the events A
and B by:

AL the event that Q1 Nr =10 and u(r) > e for some r € R.

def

B = the event that Q1 Nr =0 and us(r) > €/2 for some r € R.
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Exercise 13.3. Recall that we can obtain a O(log m)-approximation for set cover by
randomly rounding the LP. There are also natural special cases where the points and
sets have geometric structure; here we consider one such setting.

Suppose we have a set of m disks D = {dy,...,d,, C R*}, and n points P =
{p1,...,pn € R*}. We say that a point p; hits a disk D; if p; € D;. (You can assume
you can query if p; hits D; in O(1) time.) A set of points () C P is a hitting set of D
if every disk is hit by some point in Q.

Consider the problem of computing the minimum cardinality hitting set @) of D.
This is a special case of set cover, where points “cover” the disks that they hit. Design
and analyze a (polynomial-time) approximation algorithm for this problem. Here,
the smaller the approximation ratio, the better, but we will not emphasize constant
factors. (Yes, you can do better than O(logm).)

Exercise 13.4. A classical case of discrepancy is the following “balanced covering
problem”. Suppose you have n sets over n points. The goal is to color all the points
either red or blue, so that each set has the same number of points of each color, or as
close to the same as possible.
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Numerically this is generalized and modeled as follows. Let A € [0,1]"*" be
a square matrix with bounded entries. For a vector of signs z € {—1,+1}", the
discrepancy of x is the quantity

| Azl = max]|Ax|,.
(If A is the {0, 1} incidence matrix of the n sets (as rows) to the n points (as columns),
if we let +1 denote the color blue —1 denote the color red, then [|Az||  is the maximum

color imbalance over all the sets.) The general goal is to chose x € {—1,4+1}" to
minimize the discrepancy.
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Here the goal is to establish a baseline for this problem. Design and analyze an
algorithm that computes a point 2 € {—1,1}" with discrepancy

|Az||, < O(y/nlog n)

Later in the semester we will improve the bound fto ||Az|| < O(y/n).

13.A Proof of the additive Chernoff bound

In this section we prove the additive Chernoff bound. First we required the following
upper bound on the moment generating function of a bounded random variable with
mean 0.

Lemma 13.8. Let X € [—1,1] be a bounded random variable with mean E[X] = 0.
Then for all t € R,

E{etx} < 6t2/2.

Proof. Observe that for all x € [—1, 1], we have

_1+x 1—=x
2 2 7

hence by convexity of f(z) = €', we have

- 1
e e e

1—-X 1+ X t -t
o) s[5 )e (2] -
2 2 2

Moreover, by the Taylor expansion of e*, we have

P | U A U
2@+e)_2«yu+2+m+~-+1—1+2—m+m

Xz

Consequently

U A A
:1+a+@+a+'~
/2 (/2)°
<14+ —
S T T TR
:et2/2
as desired. [
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We now prove the additive Chernoff bound, which we first restate for the reader’s
convenience.

Theorem 13.1. Let X,,..., X, € [0,1] be independent, p = E[X; + --- + X,,]/n and
e > 0. Then

PIL(Xy+ -+ X)) >+ o]
PlL(Xi++X,) <p—e¢

6—2627’L

Proof. We only prove the first bound; the second bound follows from the first by
considering the variables Y; = 1 — X;. We also prove the inequality for a weaker
constant of 1/2 in the exponent instead of 2. Obtaining the factor of 2 requires more
calculations and we refer the reader to [Harl8a] for this proof.

The high-level proof idea is similar to the multiplicative proof idea — we exponentiate
and apply Markov’s inequality, and leverage independence to reduce the analysis to
analyzing the moment generating function of each X; separately.

For each X, let u; = E[X;]. Thus ny = py++ -+ pn,. Let t € (0,1) be a parameter
TBD. We have

1
P E(X1+---+Xn) Z,u+6] =PXi+ - +X, >+ + pn+en]
_ P[et(X1+---+Xn) > et(“ﬁ'”*’”*e”)}
< E[et(X1+"'+Xn_Hl_"'_ﬂn_en):|

@ —ctn ﬁ S
=1

(a) is by the independence of the X;’s. For each i, X; — u; is bounded in [—1, 1] and
has mean 0. By Lemma 13.8, we have

E{et(xi*;ﬂi)} < et2/2.
Plugging back in, we have
P[ . ] < 6nt2/2—etn.

The RHS is minimized by setting ¢ = €, hence

P[] < e 2,
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Chapter 14

PAC learning

In this chapter we discuss foundations of learning theory particularly as it relates to
randomized analysis. We start from the consistent learning model, which is appealingly
simple but does not capture generalization error. This leads to the probably approxi-
mately correct (PAC) learning model, which crucially incorporates randomization to
correct this deficiency. From there we explore the notion of generalization error and
study its correspondence to concentration inequalities that we have already studied.

14.1 The consistency model

In this chapter we are interested classification algorithms that assign labels to unlabeled
data, generally based on previous experience analyzing a limited set of labeled training
data. Instead of the design and analysis of such algorithms, we focus on developing
models that allow us to more sensibly declare if such an algorithm is really “learning”
or not.

Our first model of learning is called the consistency model. Let X denote the space
of all possible examples, also called the domain. We consider binary classification
problems where each = € X is labeled 0 or 1. A mapping ¢ : X — {0,1} from
examples to labels is called a concept. We assume that X is labeled by an unknown
concept ¢ from a known collection of concepts C C 2%, also called a concept class.

The high-level goal is to identify the underlying true concept ¢ given access to a
limited set of data. More precisely, the input concepts of a set of labeled examples

(xlay1)7 R (xrmym)

where z; € X and y; = ¢(x;) € {0,1}. A concept ¢ is consistent if ¢(z;) = y; for all i.
A learning algorithm in the consistency model is one that, given the labeled examples
above, either

(a) outputs a concept ¢’ € C consistent with the examples, or
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(b) decides that no such concept exists.

The concept class C is learnable in the consistency model if there is a learning algorithm
in the consistency model for it.

Of course we are only interested in efficient learning algorithms. The concept class
C is typically extremely large or even infinite, so directly inspecting all concepts in C
is too slow.

It is obviously desirable to be able to identify a concept ¢’ € C that agrees with all
the labeled input data. However, the consistency model does not ask ¢ to agree the
true concept ¢ beyond the labeled data. This can lead to some undesirable behavior,
such as overfitting, as in the following examples.

Example: disjunctions. Recall that a boolean formula f(xy,...,z,) is a disjunc-
tion if it is the disjunction (V) of z;’s and Z;’s. Let X = {0,1}", and let C be the
class of disjunctions over n-variables. That is, each ¢ € C corresponds to a disjunction
felxy, ..o xn) =, V@, V- V2, where ¢(z) = 1 iff f.(z) = true.

Given a set of labeled points {(z;,;)} in R%, we can

.. . X'l \/'\
szﬁirllliliiéjunctlon flxr,...,zy) =2, V- Va,, where 0,1,1,01) o
' (0,0,14,0 1) 1

(a) Variable x; iff ; ; = 0 for all samples x; with y; =0. (4,41, 0,0,1) o

(4,4,0,0,1
(b) Negated variable z; iff z; ; = 1 for all samples z; »1,0,0, 1) 0
N ’ (14,1,06,0,0) A
with y; = 1. )

Observe that f will correctly label all of the data in the
sample, and the algorithm to construct f is efficient. Thus
this concept class is efficiently learnable in the consistency model.

In general, if f*(xy,...,x,) is the disjunction defining the true concept ¢*, then
the function f we construct is a “superset” of f* in terms of the symbols z; and z;
it contains. Therefore if f is much larger than f*, then it will overfit the training
sample and generally label many more x’s as true than f*.
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Given a set of labeled points
{(x;,y;) € 10,1]%}, it is easy to iden- o e
tify the smallest rectangle R, contain- ° o« o ° o
ing all (and only) the x;’s labeled y; = 1. Likewise one can identify the largest rectangle
Ry containing the same x;’s. So by outputting either Ry or Ry (or anything in between),
(X, C) is efficiently learnable in the consistency model.

All we know about the true concept is that it is induced by a rectangle R* such
that Ry C R* C Ry. If the difference between R; and Ry is very big (particular when
the data is limited and/or not uniformly spread), then neither R; nor Ry may be a
very good classifier on real data.

14.2. The PAC learning model Fall 2025
Example: rectangles. Let X = . ° ° o . ° o ° °
[0,1]?, and let C be the set of con- o [T N
cepts defined by rectangles in [0, 1]2. ° q f Sy . .
That is, each ¢ € C is associated with e ; ’ . o« ® o . '
a rectangle R, = [a,b] x [c,d], and o ! . e o
clx)=1iff z € R.. i P e * o :

® ! S — B ! °

14.2 The PAC learning model

The problem with the consistency model is that it does not incorporate generalization
beyond the given training examples. This weakness is address in our next model,
called the probably approximately correct (PAC) learning model and introduced in
[Val84a; Val84b).

The PAC learning model is an extension of the consistent learning model. We
retain the same setup where X denotes the space of examples, {0, 1} the set of labels,
and C the concept class. The new ingredients are as follows. First, we assume that
the training examples are independently and identically distributed from a fixed (but
unknown) distribution D. Second, we define a second family of labeling functions,
H C 2%, called the hypothesis class. (Possibly H = C.) Our algorithms output a
hypothesis h € ‘H that, ideally, agrees as much as possible with the unknown concept
c. The classification error of a hypothesis h is measured by

exx(h) 2 P, [h(x) # cfz)].

We now define a PAC learning algorithm for (C,D). Let €,0 € (0,1) be fixed
parameters. A PAC learning algorithm takes as input m = poly(1/¢,1/0) (labeled)
samples drawn from D, and produces a hypothesis h. The output hypothesis A is
randomized since it reflects a randomized training set; besides, the algorithm itself is
allowed to use additional randomization. To meet the criteria of PAC learning, the
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hypothesis h must have classification error at most ¢ with probability 1 — §. This
requirement can be stated compactly as:

];L’[err(h) <€ = ]i:; Pp[h(x) #c(r)] <€l >1-4. (14.1)

(14.1) is a mathematical expression of generalization. Unlike the consistency
model of learning, PAC learning does not require h to be particularly accurate on the
sample set. (14.1) is only concerned with h’s performance with respect to the entire
distribution D.

Example: rectangles. Recall the earlier example where the concepts are induced
by rectangles in [0, 1]2. There we observed that we have efficient consistent learning
algorithms by outputting either the smallest rectangle R; or largest rectangle Rs
containing all of the positively labeled examples. We also observed that the true
rectangle R* lied somewhere between R; and Rs, which is a weak guarantee if Ry and
R, differ greatly.

Suppose D drew points x € [0, 1]*> uniformly from [0, 1]. As the number of samples
m grows large, we expect points that our closer and closer to each side of the boundary
of R*, and R; and R, should converge over time. One can show that this concept is
PAC learnable by directly calculating the generalization error for either the smallest or
largest enclosing rectangle. We will prove this later (perhaps with weaker constants)
when we more generally analyze concept classes based on their VC dimension.

14.3 Generalization for finite hypothesis classes

We first analyze the generalization error for a learning algorithm in the consistent
learning model, as a function of the number of hypotheses, |#H|. In particular these
bounds only hold when H is finite. In the following theorem, we need m to be
proportional to In(|H]|) to guarantee low generalization error.

Theorem 14.1. Let €,d € (0,1) and consider a training set of size m drawn from D.
If m > In(|H|/d) /e, then with probability at least 1 — 0, every consistent hypothesis
h € H has true error err(h) < e.

Proof. Call a hypothesis h € H good if err(h) < ¢, and bad if err(h) > €. It suffices to
show that with probability at least 1 — ¢, all bad hypotheses are inconsistent with the
training data.
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Fix a bad hypothesis h. For each sample (x;,y;) ~ D, we have P[h(z;) = y;] < 1—e.
The probability that h agrees on all m independent samples (z1,v1), ..., (Tm, Ym) iS

)
l—e)"<e™< —.

By the union bound, the probability that some bad hypothesis h is consistent is at
most

> Plh consistent] < |H| - o <0,
h bad ||

as desired. ]

Uniform convergence. For a training set S = {(x1,%1),- .., (Zm, Ym)} and hypoth-
esis h, let

err(h|S) = ;HZ s h(z;) # it

denote the empirical or training error rate of h with respect to S. Most learning
algorithms try to select h € H minimizing the training error err(h |S), in the hopes
that it would minimize err(h) as well. Here we run two kinds from risk when the
empirical error err(h |S) deviates from the true error err(h).

1. A very good hypothesis h with low err(h) may have err(h|S) much larger than
err(h), dissuading the algorithm from selecting h.

2. A very bad hypothesis h with high err(h) may have err(h |S) much smaller than
err(h), tempting the algorithm from selecting h.

Thus, for minimizing err(h | S) to be a good strategy for minimizing err(h), we need
err(h|S) to be close to err(h) for all the hypotheses h. This is given by the following
guarantee.

Theorem 14.2. Let €,0 € (0,1) and consider a training set S of size m. If m >
In(2|H|/5)/2€2, then with probability at least 1 — 4,

lerr(h) —err(h|S)| < e

forall h € H.
Proof sketch. We apply the additive Chernoff bound to each h € H, and take the
union bound. ]
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Example: disjunctions Recall the concept class C of disjunctions over X = {0,1}".
Let ‘H = C, and recall that we have a consistent learning algorithm for C. We have
|H| = |C| = 3" since each disjunction f is defined by selecting, for each i € [n], whether
T, T;, or neither appears in f. By Theorem 14.2, for m = O((n + log(1/4))/€?), the
algorithm produces a hypotheses h with err(h) < e with probability at least 1 — 0.
That is, for fixed n, the class of disjunctions is PAC-learnable.

14.4 Occam’s razor

Occam’s razor refers the general principle that one should prefer simpler explanations.
It has been echoed by many thinkers in history; for example:

o Aristotle: “Nature operates in the shortest way possible.”
o William of Occam: “Plurality is never to be posited without necessity.”

o Isaac Newton: “We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances. Therefore, to the
same natural effects we must, as far as possible, assign the same causes.”

o Bertrand Russell: “Whenever possible, substitute constructions out of known
entities for inferences to unknown entities.”

o Albert Einstein: “Everything should be made as simple as possible, but not
simpler.”

o Richard Feynman: “The truth always turns out to be simpler than you thought.”
o The Big Aristotle: “If you don’t stick to simplicity, you’ll die a horrible death.”

For learning algorithms, one way to measure the complexity of a hypothesis class
H is via its descriptive bit complexity. Fix some system by which hypotheses h € H
are encoded in bit strings. For a hypothesis h € H, let |h| denote the number of bits
needed to describe h. The descriptive complezity of H is defined as the maximum
number of bits, |h|, need to describe any hypothesis h € H. The following gives
generalization bounds in terms of the bit complexity of H.

Corollary 14.3. Let H be a family of hypotheses of descriptive complexity b. Let
6,0 € (0,1) and consider a training set S of size m.

(i) If m > (bIn(2) 4+ In(1/9)) /e, then with probability at least 1 — &, all consistent
hypotheses h € H have err(h) < e.
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(i) If m > (bIn(2) 4+ 1n(2/8))/2¢2, then with probability at least 1 — &, all hypotheses
h € H have |err(h|S) —err(h)| < e.

Proof. We have |H| < 2° because b bits can describe at most 2° hypothesis. ]

Regularization by bit complexity. Corollary 14.3 says that hypothesis classes
of low bit complexity have better generalization error. Another way to express this
theme is to say that every hypothesis i € ‘H has generalization error proportional to
its bit complexity, as follows.

Corollary 14.4. Let €,0 € (0,1) and consider a training set of size m drawn from D.
With probability at least 1 — &, we have

lerr(h) — err(h] S)| < O(\/|h| n ln(1/5)/m>

for all h € H.

Proof. For i € N, let H; be the subset of hypothesis of bit complexity between 2!
and 2¢:

M= {hen: 27 <|n <2}

Let §; = §/2'. By Corollary 14.3, for each H;, we have

lerr(h) — err(h | S)| < O<\/In(\Hi\) n ln(éi)/m)
— O(\/In(?) +1n(2i/6) /m>
- O<\/(|h\ +1n(1/5))/m)

for all h € ‘H; with probability of error at most 9;. Taking the union bound over all i,
the probability of error over all of H = U; H; is >, 0, = 0>, 1/20 = 4. O

14.5 Stronger generalization bounds via growth rate

Many learning algorithms select from a hypothesis class H that is geometrically fairly
simple. A recurring example has been a simple consistent learner for the concept
class of rectangles, which of course generalizes to higher dimensions. The perceptron
algorithm looks for a hyperplane that fits the data. This algorithm is particularly
useful when combined with techniques such as the kernel trick that first embed
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the data into a higher-dimensional space where the labeled data becomes linearly
separable.

Recall the previous chapter that the measure of simple geometric objects is
particularly well-concentrated under random sampling. Applying those techniques —
namely, e-nets and e-samples — to learning gives the following generalization bounds.

To extend the notion of a growth function to a hypotheses class H, we interpret
‘H as a family of ranges corresponding to the positively labeled sets,

{h71(1): hen}.

Recall that the growth function g(n) of H is the maximum number of distinct subsets
that can be induced by H over a set of n points.

Theorem 14.5. Let H be a family of hypotheses with growth function g(n). Let
€,0 € (0,1). Consider a data set of size m.

(i) If m > O(In(g(2m)/0)/€), then with probability at least 1 — 0, all consistent
hypotheses h € ‘H have err(h) < e.

(ii) If m > O(ln(g(2m)/(5)/62), then all h € H have |err(h|S) —err(h)| <.

Proof. For each hypothesis h, let barh(z) = 1 — h(z) denote the complementary

hypothesis. Increasing |#H| and the growth function g(n) by at most a factor of 2

(why?), we assume that that # contains the complement z of each hypothesis h € H.
Consider the (possibly infinite) point set

P=Xx{0,1} ={(z,y) :z € X,y {0,1}}
We associate each hypothesis h € H with the range
rp={(z,1—h(z))} C P.
The distribution D induces a measure pp,

= P Y) €
po(ra) = B l(2.y) €7l

The measure of a range r, equals the true error of h:

po(rn) = P l(z,y) era] = P [h(z) #y| = err(h).

(z,y)~D (z,y)~D
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Let Ry = {rn : h € H}. Let f(m) denote the growth rate of Ry. The key claim
is that

f(m) < g*(n). (14.2)

Assuming (14.2) is true, the theorem follows from the e-net and e-sample theorems
from Chapter 13, as we now explain.

For result (i), call a hypotheses bad if err(h) > €; we want to show that for a
sample of the claimed size m, with probability at least 1 — §, every bad hypotheses
is inconsistent with the data. Here we observe that since err(h) = pup(ry), this is
equivalent to saying that the sample set is an e-net. The claim now follows from
Theorem 13.4.

For result (ii), observe that err(h) = up(rs), and for a training set S, err(h|S) =
ts(ry). Thus result (ii) is equivalent to saying that S is an e-sample with probability
at least 1 — §. The sufficient bounds for m now follow from Theorem 13.2.

It remains to prove (14.2). Fix a S set of m labeled points {(z1,41),- ., (Zm, Ym)}-
Let Sj = {z; : (z;,1) € S} denote the set of input points labeled 0 and let Sy = Sy x {0}
denote the corresponding labeled pairs. Likewise let S| = {x;: (z;,1) € S} and
S1 =51 x {1} be the corresponding sets for label 1.

The total number of intersections induced by Ry on S, |Ry A S|, is bounded above
by

|Ry NS| < |Ry A So| - |Ry A Sil,

since any two intersections in |Ry A S| must differ on either Sy or S;. We claim that
both of the terms on the RHS are bounded above by g(m), which proves the claim.
Consider |Ry A Sp|. For any h € H, we have

rn A Sy ={(x,0)€ S h(x) =1} = (A1) A §)) x {0}
That is,
|Ry; A\ So| = [H A S| < g(m).
Similarly, for |Ry A Sy, for each hypothesis h we have
A Sy = {(zi,1) € S h(w) =0} = (h (1) AS;) x {1}.
Consequently
[Rae A Si| = [H A Spl < g(m).

This completes the proof of the claim, hence the proof of the theorem. m
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Example: rectangles. Consider the concept class C of rectangles in R%2. We have
a consistent learning algorithm by outputting any rectangle that contains only the
positively labeled points of the training set.

Rectangles have constant VC-dimension, hence polynomial growth g(n) =n
(cf. Sauer’s lemma, Theorem 13.7). So we need O(In(1/0)/€) to guarantee that with
probability at least 1 — ¢, the rectangle we output has true error at most e. That is,
rectangles are PAC-learnable.

More generally, any concept class with fixed VC-dimension and a consistent
learning algorithm is PAC-learnable.

o(1)

14.6 Additional notes and materials

These notes are based on the first 10 lectures of [Sch19] and sections 5.1-5.7 of
[BHK20]. We refer the interested reader to [Sch19] for additional background on these
and other topics in learning theory.

Lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

14.7 Exercises

Exercise 14.1. The definition of PAC learning requires finding a low-error hypothesis
with probability at least 1 — ¢ for aribtrary 6 > 0. Consider the following weaker
definition of PAC learning where we drop the requirement on d: let us say that an
algorithm is a weak PAC learner if for any € > 0, with a training set of size poly(1/e),
and in randomized polynomial time, it produces a hypothesis with error at most ¢
with probability at least 1/2. Design and analyze a system that takes as input a
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weak PAC learning algorithm and produces a PAC learning algorithm (in the original
sense).
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Chapter 15

Randomized greedy algorithms

15.1 Coverage and submodular functions

In the maximum coverage problem, we have m elements [m] = {1,...,m}, and n sets
Ay, ..., A, C [m]. We also have a cardinality constraint k& € N. The goal is to select
(at most) k sets A, A.,, ..., A, that maximizes the size of the union

A, UA, U---UA,.,|

This problem is NP-Hard.

We can interpret coverage as a set function f as follows. We identify a set A,
by its index e. We identify a collections of indices S C [n] with the corresponding
collection of sets {4, : e € S}. We define a function f : 2"l — R5¢ by

U A

e€eS

f(S) = (# points covered by sets (w/ index) in S) =

The goal is to maximize f(S) subject to |S| < k.
Our analysis abstracts out coverage and uses only the following properties of a set
function f: 2V — Rsg:

o Normalized: f(0) =
o Nonnegativity: f(S) >0 for all S.
o Monotonicity: f(S) < f(T)if S CT.

o Submodularity: For nested sets S CT C N, and e € N,

f(S+e)=f(S) = [(T'+e) = f(T).
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Submodularity is a natural property both in combinatorics (e.g., coverage, or the
rank function of a matroid) and in real-world settings. For example, if we interpret
f as a utility function over sets of items, then f(S + e) — f(S) is the marginal gain
of adding item e to a collection S. Submodularity says that the marginal gain of e
to S is decreasing in S. Economists call this “decreasing marginal returns”. Here we
introduce a convenient notation for marginal gains:

FAIS) = f(AUS) = f(9).

If f is submodular, then f(A|S) is decreasing in A for all sets A (and not just
singletons). Note that g(A) = f(A|S) defines another set function. Note that if
f is submodular, then g is submodular. Similarly for monotonicity. Note that g is
automatically normalized, even if f wasn’t.

Henceforth we assume that any set function f is always normalized. We assume
access to f via an “oracle model” where one can query f(S) for any given value of S.

15.2 Greedy algorithm

The simply greedy algorithm repeatedly takes the item of maximum marginal gain
until the cardinality constraint is met. For maximum coverage, this would be:

Starting with an empty collection of sets. For k iterations, select the set
that covers the most elements left uncovered by the current collection, and
that set to the collection.

More formally, for a set function f:
greedy(f,N,k)
1. Sy « 0.
2. Fori=1,... k:
A. Let e; € N maximize f(e;|S;_1).
B. S;« S; +e.
3. Return S;.

The key lemma. The key lemma analyzes the improvement we make in each
iteration. We can interpret Lemma 15.1 below as saying that the greedy algorithm
maintains the inequality

(improvement) > —(room for improvement),

| =

on each iteration.
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Lemma 15.1. Fori=1,...,k, f(S;) — f(Si—1) = 1(OPT —f(S;_1)).

Proof.  We first sketch the proof for maximum coverage. There S
are at least OPT —f(S;_;) elements covered by the optimal

solution, but not covered by S; ;. Meanwhile there are k sets /

in the optimal solution. In particular there is some set in the m\
optimal solution that covers at least (1/k)th of the elements. C?‘.‘D

Thus whatever set the greedy algorithm selects adds at least
(1/k)(OPT — f(S;—1)) to the total coverage.
For generally monotone submodular f, we have

b

189 = F(8i) = fles] i) £ 1 X f(d]5ia) 2

desS*

—~
N2

(c

(57 ]5im1) 2

| =

1 *
- (F(57) = £(Sie).

Here (a) is by greedy choice of e;. (b) is by submodularity. (c) is by monotonicity. [
Overall analysis. Iterating Lemma 15.1 over k steps leads to the bound.
Theorem 15.2. f(S;) > (1 —e')OPT.

Proof. We have shown that

(ith improvement) = f(S;) — f(Si_1) > —(OPT — f(S;_,)) = ( room for improvement )

after 4 — 1 iterations

Rearranging, we get
OPT—/(8) < (1 ) (OPT ~f(Si-1)).

That is,

< room for improvement ) < (1 B 1) ( room for improvement )
after ¢ iterations - k after ¢ — 1 iterations /°

We see that “room for improvement” decays exponentially. Unrolling the above, we
have

OPT — f(S,) = OPT
OPT — f(S,) < (1 - }C) OPT

OPT — f(S,) < (1 _ ;)2 OPT
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1 3
OPT —f(S3) < (1 - k) OPT
1 k
OPT—£(5;) < (1— k) OPT
< e TOPT.

The last step (a) comes from the inequality 1 4+ = < e” for all . The final inequality
is the claim, up to rearrangement. O

15.3 Nonnegative submodular maximization

Suppose f with a nonnegative submodular function, but not monotone. For example,
suppose we had a directed graph G' = (V, E), and let f : 2V — Rsq be the size of the
outcut:

f(S) = ’5*(5)‘ where S C V.

f is normalized, nonnegative, and submodular, but not monotone.

Suppose we again want to maximize f(S) subject to |S| < k. The greedy algorithm
won’t work because f when is not monotone. For example, for f(S) = |7(9)], if
k = |V], the greedy algorithm will take all of the vertices in the graph. But we
certainly don’t want to do that.

What goes wrong in the analysis? Where did we require monotonicity? The only
point where we use monotonicity is in the last step of the proof of Lemma 15.1, where
we observed that

FOS™[S;) = f(S*US:) — f(Si) = f(S*) — f(Sh).

When f is not monotone, we don’t have f(S*US;_1) > f(S5;-1). The extra elements
from S* could hurt the value!
We introduce randomization to introduce this issue. Consider the following lemma.

Lemma 15.3. Let f be a submodular function, and let X C N be a random subset
such that for each e € N, Ple € X] < p, for a fized parameter p € [0,1]. Then

E[f(X)] = (1 =p)f(©).
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For example, if S; was a randomized set where Ple € S;] < 1/2 for all ¢;, then

1

E[f(57|5)] = E[f(5"US5)] = E[f(S)] = 5f(57) = E[f(S)].

N |

So either E[f(S;)] > OPT /2 already (and we are happy), or we at least make some
positive progress.
15.3.1 Continuous extensions of f.

We prove Lemma 15.3 from a continuous perspective. A function F' : [0, 1]N — Ris
an extension of f if

F(ls) = f(9)

for all sets S C N, where 1g is the {0, 1}-indicator function.
Perhaps the simplest continuous extension of F' is via randomized rounding. The
multilinear relazation of f is the function Fy (p) defined by

FML(p) = E[f(S)]

where S C N is the random set where each element e is sampled with probability p..
(One can verify that Fy,(p) is linear in each coordinate e; see exercise C.61.)

In general, any mapping from p € [0, 1" to a random distribution of set S, with
marginal values p defines a continuous extension F'(p) = E[S,]. The convex closure of
f is defined by choosing S, to minimize E[S,]:

F~(p) =inf{E[f(S)] : SC N, Ple € S] =p, for all e € N'}.

For general f this minimization problem may be difficult. But for submodular
functions there is a simple solution, due to Lovasz. The high-level idea is that since
f has decreasing marginal returns then to minimize f(.5), we want to maximize the
overlap between elements. The overlap is maximized by the correlated randomized set

Si={eeN :p. >t}
for t € [0, 1] sampled uniformly at random.

Lemma 15.4. F'~(p) = E;[S]
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Proof. Recall that a family of sets F is a chain if we can number the sets F =
{S1,...,Sk} such that S; C S;;, for all 7. Observe that the support of S; is a chain.
(Indeed, S; C S, for v < t.) It is not difficult to see that it is the unique random set
with margins p whose support forms a chain.

Of all randomized distributions of sets S with marginal values given by p, choose
the distribution maximizing E[|S]|]. (The space of such distributions is compact, so
such a set exists.) We claim that the support of S is a chain, which implies that
S =5

If not, then there are two (nonempty) sets A, B in the support of S such that
neither A C B nor B C A. We have

f(A)+ f(B) > f(AUB)+ f(AN B). (15.1)

Let p = min{P[S = A], P[S = B]}. Let T be the random set obtained from S by
decreasing the probabilities of T"'= A and T' = B both by p, and increasing the
probabilities of "= AU B and T'= AN B both by p. Then (15.1) implies that

E[f(T)] < E[f(5)].

Furthermore, since |A|” + |B|* < |AN B|* + |AU B|? by convexity of g(z) = 22, we
have E[\Tﬂ > E{]Sﬂ, a contradiction to the choice of S. O

This brings us back to Lemma 15.3.

Proof of Lemma 15.3. Let x be the marginal values of X. Let S; = {e: x. >t} and
let t € [0,1] be drawn uniformly at random. We have

E[f(X)] = F~(z) = E[f(S5)] = P[t > p|E[f(S}) |t = p| = (1 = p)f(0).

15.3.2 Randomized greedy

The following variation of the greedy algorithm introduces randomization to each
iteration. Rather than identify the single element e of maximum marginal value, it
identifies the top k elements by marginal value, and samples one of them uniformly
at random.
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randomized-greedy(f, k)
1. S@<—®
2. Fori=1,... k:

A. Let R; C N be the k elements e w/ max f(e|S;_1).
B. Sample ¢; ~ R; uniformly at random.
C. Sz — Sz'—l + €;.

3. Return S;.

Conditional on S;_1, we have

E[f(5)] = f( Zf | Si1) = 7 Zf | Si1) 2 f(5*|52 1),

eeR eGS*
just like before.

Let p=1—1/k. Each element e has at most a 1/k chance of being selected in
any given particular iteration. So

Ple ¢ 5] > p'

for all 7 and e. Therefore, by Lemma 15.3, we have

BIF(S9)] ~ BIF(Si0)] > 1 (o~ OPT Bl (Si.0)]).

Rearranging, we have

Blf(s))> L (i)

Unrolling, we have
1
BIf(5))] > 1 OPT,

2
E[f(S,)] > L opT +% OPT = ?p OPT,

2 3
“opT 4+ 2 opr = OPT,

E[f(S3)] > A 3

N"E ™

) )
? % = for each 1.
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For 1 = k,

1
E[f(Sk)] = p"' OPT > — OPT.
e
In conclusion:

Theorem 15.5. randomized-greedy(f,k) returns a randomized set S with |S| < k
and E[f(S)] > OPT.

15.4 Additional notes and materials

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

15.5 Exercise

Exercise 15.1. Prove that the multilinear extension Fy, (x) is multilinear function.
(This means that for all fixed z, and elements e € N, f(x 4 d1.) is a linear function
in 6 over all § such that z. + 4§ € [0, 1].)

Exercise 15.2. Recall that the following randomized greedy algorithm gets a 1/e-
approximation for maximizing normalized nonnegative submodular functions subject
to a cardinality constraint of k.

randomized-greedy(f : 2V — Rsg, N, k)

1. Sy« 0.

2. Forie=1,... k:
A. Let R; C N be the k elements e with maximum f(e|S;_1).
B. Sample e¢; ~ R; uniformly at random.
C. Set S; «+ S;_1 +¢;.

3. Return S;.

What if f was also monotone? Analyze the randomized greedy algorithm for
normalized monotone submodular functions f.
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Exercise 15.3. The deterministic greedy algorithm takes O(nk@) time where Q
denotes an evaluation query to f. For large values of k this may be prohibitively
slow. The following algorithm introduces random sampling to try to speed up the
algorithm.

subsampled-greedy(f,N ,k,e € (0,1))
1. S() < Q)
2. Fori=1,... k:

A. Let R C N sample nlog(1/e)/k elements independently with
repetition.

B. Let e; € R maximize f(e|S;_1).
C. Set SZ < Si—l + €;.
3. Return S;.

Analyze subsampled-greedy per the following steps.
1. Analyze the expected running time of subsampled-greedy.

2. Prove that for all 7, conditional on S;_1,

1—c¢

E[f(Si|Si-1)] = 2

(OPT —f(Si-1)).

3. Analyze the overall approximation ratio (in expectation) of Sy.
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Entropy and error-correcting codes

16.1 Coding theory

Coding theory concerns the very practical problem of digital communication over
imperfect lines of communication. Here we consider one particular model adopted by
Claude Shannon when he was working for the American Telephone and Telegraph
Company (AT&T) in 1945. In this model, we imagine two locations, A and B. We
want to transmit a bit string = € {0,1}" from point A to point B. While points A
and B are connected by some kind of connection, this connection is imperfect. When
sending a bit string from point A to point B, every bit gets flipped independently
with some probability p. The goal is to reliably communicate bit strings even in the
presence of this faulty connection.

It is not impossible to communicate over a bad connection, as anyone who uses a
phone knows. Suppose you are calling a friend, and the reception is not very good.
You say something. Your friend ‘replies, ‘sorry, I couldn’t hear you” So you say
it agian. Your friend again suggests that they didn’t understand you. So you say
it again and again and again and eventually you start yelling. Ultimately, you are
adding redundancy to try to communicate your point.

The goal of coding theory is to add enough redundancy to reliably communicate,
but otherwise minimize the amount of redundancy. In particular, we have two
functions, an encoder C : {0,1}"™ — {0,1}" and a decoder D : {0,1}" — {0,1}". The
encoder takes the input message from z € {0,1}"™ and maps to to a longer message
{0,1}", where n > m. The encoded message C(x) is transmitted. On the other end,
the decode receivers a corrupted message y € {0,1}" of C(z) and decodes it to some
D(y) € {0,1}". To model the noisy transmission, let N : {0,1}" — {0,1}" be a
randomized function that flips each bit independently with probability p. We can
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diagram the entire transmission process as follows.

encode C(l’) bits flip w/ prob. p\N(C(l’)) decode D(N(C(l’)))
R™) (R™) (R™) R™)

The rate of transmission is the ratio

L m # input bits
rate of transmission = — = —n—————.
n  # output bits

The average error rate is the probability
P[D(N(C(x))) # 7]

over the randomness in N and over = € {0,1}" chosen uniformly at random. We
want high rate of transmission and low average error rate.

The model is reasonable and high rate of transmission is clearly of practical. But
is the problem fundamental? Are there basic limits or universal laws for coding?
Shannon [Sha48] prove that, as the average error rate tends to 0 and n tends larger,
the optimum rate of transmission is

1—p10g<]1)> —(1—p) log(lip)

The result is not only practical but beautiful, and elevating coding theory as a
mathematical subject. The full theorem is as follows:

Theorem 16.1 ([Sha48]). Consider transmission over a noisy channel where each bit is
flipped independently with probability p € (0,1/2). Let H(p) = plog 119 +(1—p)log ﬁ.

1. For all 6 > 0, and n sufficiently large, there is a coding scheme that has
transmission rate at least 1 — H(p) — & and average error rate at most §.

2. For all fired 6 > 0, and n sufficiently large, any coding scheme with transmission
rate at least 1 — H(p) + d has average error rate greater than 9.

Entropy. The quantity H(p) is defined as follows.

Definition 16.2. Let X € X be a discrete random variable. The entropy of X,
denoted H(X), is defined as

H(X) = > —P[X = a]log(P[X = z]),

zeX
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with the convention that 0/0 = 0, and that log denotes the logarithm base 2.
Forp e (0,1), H(p) is defined as the entropy H(X) of the binary variable X €
{0,1} with P[X = 1] = p. That is,

H(p) = plog <;> + (1 —p)log (ip)

We will do a more thorough investigation of entropy later on in this article. Here
we mention some salient points.

Intuitively, entropy measures the uncertainty of a random variable. H(p) is
maximized by p = 1/2, which is the hardest Bernoulli variable to predict. For discrete
random variables X with n outcomes, H(X) is maximized by the uniform distribution,
which has entropy log(n). For two random variables X and Y, the conditional entropy
of Y (conditioned) on X is the expectation, over X, of the entropy of Y conditioned
on X:

H(Y | X) 2 BIH(Y) | X].
If X and Y are independent, then H(Y | X) = H(Y'). Conditional entropy satisfies
H(X,Y) = H(X) + H(Y | X),

where H(X,Y) is the entropy of the joint random variable (X, Y"). Intuitively, knowing
the outcome of X should not increase the uncertainty of Y. This is encoded in the
principle of independence:

H(Y | X) < H(Y).
This is equivalent to the inequality
H(X,Y) < H(X) + H(Y),

which states that the entropy of (X,Y’) is maximized when X and Y are independent.

As an interesting application of entropy, consider a set S C [n] selected uniformly
at random among all subsets of [n] of size at most pn, for fixed p € (0,1). Let
Yi,...,Y, € {0,1} be the indicator variables for each element being sampled in S.
We have

H(Y:,...,Y,) = H(S) = 1og§ (7)
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where the sum of binomials is the total number of subsets of size at most pn. On the
other hand, by the principle of independence,

HYL, .. ) < 3O H(Y) = 0 (p).

n 1/p 1/(1-p)\ "
S0 <= (G) () )
o\t p I=p

16.1.1 Shannon’s Upper Bound

Thus

In this section, we prove Shannon’s upper bound - the first claim in Theorem 16.1.
We first state the part that is relevant.

Theorem 16.3. For all 6 > 0, there exists a coding scheme
(C:{0,1}" — {0,1}", D :{0,1}" — {0,1}")
that has average error < § and transmission rate > 1 — H(p) — 6.

Proof. Let n € N be a large parameter TBD, and let m = (1 — H(p) — d)n. Rather
than propose a specific code, we define C : {0,1}"™ — {0,1}" to be a uniformly random
function. Define D : {0,1}" — {0,1}™ by setting D(y) to be the point x closest to
C(x), breaking ties arbitrarily.

Since H(p) is continuous, we can choose ¢ > 0 sufficiently small such that

| S

[H((1+ €)p) — H(p)| <

We claim the following for each fixed x € {0,1}"™.

1. For sufficiently large n, with probability of error < §/2, no other point x’ €
{0,1}™, 2" # x has its codeword C(x") within (1 + €)pn bits of N (C(x)).

2. For sufficiently large n, with probability of error < 0/2, the noisy transmission
N(C(x)) flips at most (1 + €)pn bits in C(x).

Suppose the above holds and let n be sufficiently large. Then with combined probability
of error < §, C(z) is the only point within (1 + €)pn bits of C(x). That is, when we
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consider all of the randomness over the random of choice of z € {0,1}", the random
encoding function C : {0,1}"™ — {0,1}", and the noise N'(C(z)), we have

P PWN(C(2) # 2] < 0. (16.1)

Inequality (16.1) above seems similar to the low average error guarantee we seek,
except it is averaging over all random codes. We want to prove there exists a single
fixed (and no longer random) code C with low average error, where as the LHS (16.1)
is also randomized over all possible codes C. To isolate a specific code C with average
error d, we rewrite (16.1) as

]g;[average error of C] = ]g) xfj’v[D(./\/(C(:v))) #z]| <6.

To dramatically complete the proof: by the probabilistic method, there exists an
encoding C : {0,1}™ — {0,1}" such that the average error is < 9.

Claim 1. For sufficiently large n, with probability of error < §/2, no other point
' €{0,1}", 2" # x is within (1 + €)pn bits of N'(C(x)).

We prove the claim conditional on y = N(C(z)); the unconditional claim imme-
diately follows. Fix y = N(C(x)). Consider any other input point 2’ € {0,1}". By
construction, C(a’) is selected uniformly at random from {0,1}". Therefore

(1+e)pn
P|C(') = C(w)ly < (1+e)pn] =27 3 (“) < QU+
i=0
By the union bound, we have
P[||C(z") = C(x)||, < (1 + €)pn for some 2z’ # x] < gm+(H((1+e)p)~1)n_
The RHS is < §/2 iff
m < (1—H((1+€)p))n —1—log(1/6),

which occurs iff

(transmission rate) = % <1—-—H((1+4+¢)p) — O(log(i/e))
By choice of €, we have
1— H((1+e)p) — O(m(;/@) >1— H(p)—5/2 — O(log(ﬂl/e))

>1—-H(p) -0

for n sufficiently large. The claim now follows from the choice of m.

230



16. Entropy and error-correcting codes Kent Quanrud
16.1. Coding theory Fall 2025

Claim 2. Fizy € {0,1}". For sufficiently large n, with probability of error < /2, a
noisy transmission N (y) flips at most (1 + €)pn bits in y.

We have
lim P[(# bits flipped) > (1 + €)pn] %) Jim. e~ Pn/2 — .
where (a) applies the Chernoff inequality. O

16.1.2 Lower bounds for Shannon’s capacity

Theorem 16.4. For all fized 6 > 0, and n sufficiently large, any coding scheme with
transmission rate at least 1 — H(p) + 0 has average error rate greater than ¢.

Proof. Let (C:{0,1}" — {0,1}",D:{0,1}" — {0,1}"") be a coding scheme with
transmission rate > 1 — H(p) +J. We claim that this code has error rate > §. In fact,
will show that error rate can be made arbitrarily large for sufficiently large n.

Let € > 0 be a parameter TBD. Let E be the event that N(C(z)) differs in at
least (1 — ¢)pn bits from C(z) and no more than (1 + ¢)pn bits from C(z). Let E be
the complementary event.

We have

P[D(N(C(x))) = x| E].

(average correctness rate) < P {E} +P

For the first term, we have

P[E] = P[IN(C(x)) ~ C(@)lly < (1 = e)pn] + P[IN(C(x)) = C(a)lly > (1 + )pn
<2 6—e2pn/3
by Chernoff bounds. In particular, for fixed € > 0,
Jim P[E| = 0.

To bound the second term, for each z, let
Yo={yeD(@): (1—epn < |lz —ylly < (1 +e)pn}.

For fixed x, under event F, Y, represents all the possible points for N(C(z)) that
would be decoded to . We have

PIDWC@) =2 Bl =52 ¥ X PIVEW) =1

$€{0,1}m YyEYy
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For each z, and for each y € Y, we have

@ (1 on o o (1= D"
PIN(C(x)) = 9] £ p1m9(1 — p) (1= = o~ 1) (p )

Here (a) is because because y differs in at least (1 — ¢)pn bits. We now have

1 - 1 —p epn
PDIN(C@) =2 E] < - 3 HW() .|
=N 2 xe{%:l}m p

epn
© (1 Hp)n-m ( 1- P)
N p

epn
g 2—571(1 — p) _ 2(610g(1_7p)75)n.
p

Here (b) is because the sets Y, partition {0, 1}", so their cardinalities sum to at most
2". (c) is by assumption on the transmission rate. For e > 0 sufficiently small, the
RHS tends to 0 as n — oo. O

16.2 Entropy

In this section, we explore the some of the many interesting properties of entropy. We
restate the definition for the reader’s convenience.

Definition 16.2. Let X € X be a discrete random variable. The entropy of X,
denoted H(X), is defined as

H(X) = Y~ PX = a]log(P[X = 1],

zeX

with the convention that 0/0 = 0, and that log denotes the logarithm base 2.
Forp e (0,1), H(p) is defined as the entropy H(X) of the binary variable X €
{0,1} with P[X = 1] = p. That is,

H(p) = plog <219> + (1 —p)log <1>

I—p

For an alternative definition of the entropy of X € X, let X’ be an independent
and identically distributed copy of X. Then

-]

232



16. Entropy and error-correcting codes Kent Quanrud
16.2. Entropy Fall 2025

Put another way, given a discrete random variable X € X, let us define' the shock
of X, Sx > 0, as the random variable that, if X = x, takes the value

Here P[X = x] refers to the a priori probability of X equaling x. Then the entropy
of X is

H(X) = Ellog(Sx)]

16.2.1 Concavity and the maximality principle.

Recall that a function f : [a,b] — R is concave if for all x,y € [a,b] and p € [0, 1], we
have

pf(x) + (1 —=p)fly) < flpz+ (1 —p)y).

By induction, we can extend this to finite convex combinations of points. Let
x1,..., T, € la,bl and py,...,p, > 0 with p; + -+ + p, = 1. Then we have

puf (@) + -+ paf(en) < f(pran + -+ potn). (16.2)
Let f: [a,b] — R be a function and let X € [a,b] be a discrete random variable taking
on a finite number of values. Say X takes on n values x4, ..., x, with probabilities

D1, - .., Pn respectively. Then (16.2) is the same as saying that
E[f(X)] < f(E[X]).

We can extend this to continuous distributions of X by approximation by finite
distributions. Thus we have Jensen’s inequality, which is basically rewriting the
definition of concavity:.

Lemma 16.5. Let X € [a,b] be a random variable, and let f : [a,b] — R by concave.
Then

E[f(X)] = f(E[X]).

Proof. Suppose X takes on only two values, a and b, with probability p and (1 — p)
respectively. Then

E[f(X)] =pf(a)+ (1 =p)f(b) = f(pa+ (1 —p)b) = f(E[X]).

We can extend the argument to any finite number of values by induction. O

IThis is not a standard terminology.
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Lemma 16.6. Quer all discrete distributions over n values, entropy is mazrimized by
the uniform distribution, which has entropy log(n).

Proof. Suppose X takes on at most n different values x. Then
(a)
H(X) = E[log(Sx)] < log(E[Sx]) = log(|X|)

(a) is by Jensen’s inequality. (b) is because

P[X = z]
S =2 px = ="
On the other hand, if X is the uniform distribution over n values x4, ..., x,, then

H(z) = ZP[X = 1 log<X i ﬂUz) = Zilog(n) = log(n).

16.2.2 Conditional entropy

Let (X,Y) be jointly distributed random variables. Conditional on X, Y is a random
variable with a well defined entropy H(Y") (given X).

Definition 16.7. The conditional entropy of Y on X is defined as
H(Y | X) = E[H(Y)| X]

In terms of “shocks”, we let Sy|x be the shock value of the conditional variable Y
given X. To be precise, conditional on X =z and Y =y, Sy|x takes the value

S = 1
Py =y X =4

where P[Y =y | X = x] is the a priori probability given only X = x. Then
H(Y | X) = g{:[g [1og(SXY)H = E [log ()]

We have the following identity that breaks the joint entropy into two entropy
terms.

Lemma 16.8. H(X,Y) = H(Y | X) + H(X)
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Proof. Observe that conditional on X = x and Y = y, we have

1 1
Sxy = PX=2zY=y PX=uPY=y/X=2a SxSyix-
Thus
H(X,Y) = E [log(Sx,y)] = E [log(Syix) +1log(Sx)] = H(Y'| X) + H(X),
as desired. O

16.3 Principle of Independence

The following lemma observes that taking conditioning on another variable can only
decrease the entropy. This is called the principle of independence.

Lemma 16.9. Let (X,Y) be jointly distributed. Then H(Y | X) < H(Y)
Proof. We have

HY | X) = B flog ()] = B [Bflox(v1v) | Y]

2E 1og<§[syx | Ym 2H(y).

(a) is by Jensen’s inequality. (b) is because, conditional on Y = y, we have

PX=z|Y=9 ow—pl) 1
Q[SYX‘Y}:%:P[Y:yyX:x]:Z W) P

(c) substitutes Bayes’ law:
PX=z|Y=yPY=y=PX=2Y=y=PY=ylX=zPX=uzl.

16.3.1 What is entropy, really?

We close with a quote from Shannon [TMT71].

My greatest concern was what to call it. I thought of calling it “infor-
mation”, but the word was overly used, so I decided to call it “uncertainty”.
When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, “You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more
important, nobody knows what entropy really is, so in a debate you will
always have the advantage”.
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16.4 Additional notes and materials

For additional background on entropy, see [Gall4].

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

16.5 Exercises

Exercise 16.1. In Section 16.1, we discussed coding schemes for achieving low average
error rates. Recall that an average error rate of  means that the transmission failure
probability is averaged over all z € {0,1}":

average error = E jl\D[[D(N(C(:L')))] # x| = P [DN(C(x))) # x].
By contrast, a uniform error of § means that for every z € {0,1}", the transmission
failure probability is at most J: that is,

uniform error = max E[D(N(C(x))) # x| < 4.

Prove Shannon’s upper bound (Theorem 16.1) for uniform error instead of aver-
age error. That is, show that for all fixed § > 0, there exists a coding scheme
(C:{0,1}"" = {0,1}", D : {0,1}" — {0,1}"™) (for m,n sufficiently large) with uni-
form error § and transmission rate at least 1 — H(p) — 4.”

Exercise 16.2. In Section 16.1, we develop redundant codes that are extremely
efficient w/r/t their transmission rate. Another problem, moving in sort of the
opposite direction, is compression.

Here we consider compression in the following model. Let X be a finite alphabet
of n letters. Our goal is to efficiently assign bit strings (codes) to each letter in X

2Hint: Given a code with average error rate §, how many of the input words = have transmission
failure probability greater than 267
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so that messages, composed of sequences of letters in X, are as efficient as possible.
More specifically, we are only allowed to use prefiz-free codes, which are mappings

C:¥—{0,1}"

assigning bit strings (of varying length) to letters such that no code C(z) (z € X) is a
prefix to another code C(y) (y € ¥). Prefix codes are particularly easy to decode. As
we scan the bits of an encoded message, as soon as we see a string that matches the
code of a letter, we immediately decode that the scanned bits to the letter. We then
continue to scan the rest of the bits as the beginning of the code of a new letter.

For example, the most straight forward prefix code would be to assign each letter
in ¥ a different bit string with [log n] bits.

Prefix codes can be identified with binary trees where each branch represents a 0
or 1 bits, and the leaves correspond to a letter where the root to leaf path gives the
encoding of a letter.

We assume that not all letters in ¥ are distributed frequently. (This is where we
have some opportunity for compression) Let p € A¥ be a fixed distribution over X.
For each letter in x € X, p, represents the average frequency of the letter x in these
messages.

Given an encoding C : ¥ — {0,1}", the average number of bits per letter is

> palC(x)],

A

where |C(x)| denotes the length of the bit string C(z).

For this problem, consider a special case where every probability p, is a power
of 2, of the form 1/2% for some integer i, € N. Show that there exists a prefix code
C : X — {0,1}" where the average length is ezactly H(p), where H(p) is the entropy
of the random letter drawn from X in proportion to p:

H(p) = Xl log (p(l)>

Here’s a harder follow up question: can one do better than the entropy H(p)? Either
prove that H(p) is optimal, or give a counter example where the probabilities are
powers of 2 and one can achieve better than H (p) average bits per letter.

As an example, the following tree defines a prefix code over a distribution of
7 letters {A, B,C, D, E, F,G} with probabilities {1/4,1/4,1/8,1/8,1/8,1/16,1/16},
respectively. One can see that the average length matches the entropy of the distribu-
tion.
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Chapter 17

Lovasz local lemma and resampling

17.1 Resampling k-SAT

Recall that in the k-SAT problem, we are given a CNF formula f(z,...,z,) with
m clauses C1, ..., C,, and k (distinct) variables per clause. In max k-SAT, the goal
is to satisfy as many clauses as possible, and previously we showed that a random
assignment satisfies (1 —27%)m clauses in expectation. More precisely we showed that
cach clause is satisfied with probability 1 — 27%.

Now suppose m < 2¥. By the union bound, we have

m

P[f(z1,...,x,) = false] < Z [ith clause is unsatisfied] = g <L

Therefore, f must be satisfiable!

Of course, when m > 2, a simple union bound does not show that f is satisfiable.
In this chapter, we explore a probabilistic technique called the local lemma, that offers
an alternative criteria for proving that a k-SAT formula is satisfiable, independent of
m.

The theorem we unveil below is constructive and comes with a simple randomized
algorithm for k-SAT which we now describe. The algorithm is called the (random-
ized) resampling algorithm and was described by [Mos09]. Given a k-SAT formula
f(zq, ..., x,), we first assign x4, ..., x, € {true, false} independently and uniformly
at random. Then, as long as there is a clause C' that is unsatisfied, we resample all
the variables in C' independently and uniformly at random. The algorithm continues
to resample unsatisfied clauses until all clauses are satisfied. (A priori the algorithm
may never terminate.)

Surprisingly, under certain conditions independent of m and n, and which are
easy to verify, f always has a satisfying assignment, and the resampling algorithm
described above terminates in polynomial time in expectation. Below, we say that two
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clauses C; and C; of f intersect if there is a variable z;, appearing (as is, or negated)

in both C; and Cj.

Theorem 17.1. Let f(x1,...,z,) be a k-SAT CNF with m clauses, such that each
clause intersects at most d other clauses. If d < 2¥/e — 1, then f is satisfiable.
Moreover, a satisfying assignment can be computed by the resampling algorithm while
sampling at most m/d clauses in expectation.

The most striking feature of Theorem 17.1 is that the criteria for satisfiability —
d < 2% /e —1 where d bounds the number of clauses overlapping with a single clause —
is local. It is easy to inspect a CNF formula and compute d and see if Theorem 17.1
applies.

17.2 The Lovasz Local Lemma

The k-SAT result described above is just one example of a more general technique
called the Lovdsz local lemma (LLL) [EL75]'. It applies in a more abstract setting
where we have a family of events we want to avoid, and assuming dependency among
the events is limited in a particular way.

Formally, let Ay, ..., A, denote events in an arbitrary probability space. We write
A; ~ Aj when A; and A; are not mutually independent, and A; ~ A; otherwise.
The question is whether it is possible for none of the events Ay,..., A, to occur
simultaneously; i.e., if P[Ay, ..., A,] > 0. [EL75] gave the following sufficient condition
which depends only on the local dependencies of each event A; to other events A;.

Theorem 17.2 ([EL75]). Suppose there exists values x(Ay),...,x(Ay,) € (0,1) such
that for all events A;,

PlA] < 2(4) [ (1-a(A). (17.1)
W

Then P[Ay,..., A,] > 0.

A simpler (“symmetric”) version of Theorem 17.2 that applies to the k-SAT
problem is as follows.

Corollary 17.3. Suppose that each event A; is mutually independent of all but at
most d other events A;, and P[A;] < p for all events A;. If ep(d + 1) < 1, then

P[A,,...,A,] > 0.

IErdés attributes the technique to Lovasz and helped popularize the name. LLL is also referred
to as just the local lemma in the literature.
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Proof. The claim follows from Theorem 17.2 for x(A4;) = 1/(d + 1). O

This establishes the fact that any k-SAT formula with at most 2% /e dependencies
per clause is satisfiable. Theorem 17.2 has many other applications both in computer
science and combinatorics, such as in proving extremal graph coloring bounds (e.g.,
[AS16; MRO2]). For k-SAT, however, it does not provide an algorithm for actually
computing such an assignment.

Developing an algorithmic LLL was an important open question. Progress on
this question starts in 1991 when [Bec91] analyzed an algorithm for a hypergraph
2-coloring problem that can also be addressed by LLL. Subsequent developments
followed in [Alo91; MR98; CS00; Sri08].

In 2009, a breakthrough by Moser [Mos09] proved Theorem 17.1 up to a constant
factor in the bound for d. This work proposed the simple resampling algorithm
described above and also a surprising proof technique now called the “entropy com-
pression argument”. This was followed up by [MT10] which extended the techniques
to the more general setting of Theorem 17.2 (via a related but different proof), and
obtained tight bounds.

To present the constructive version of Theorem 17.2 we assume a more concrete
setting where the events are driven by an underlying set of independent random
variables. Let V be a finite collection of mutually independent random variables in
a fixed probability space. Let Aq,..., A, be a set of events where each event A; is
determined by a subset of variables S; C V. (For k-SAT, V corresponds to the boolean
variables x1,...,z,, and each clause C; is associated with the event A; where C} is
not satisfied.) The concrete goal is to compute a configuration of V so that none of
the events Ay, ..., A, occur.

The resampling algorithm extends to this more general setting as follows. We
initially sample each variable X € ) independently from their respective distributions.
While there is an event A; induced by the current sample of variables, we resample
the variables in S;. The algorithm terminates when none of the events Ay,... A,
occur.

The following theorem from [MT10] states that the resampling algorithm gives an
algorithmic LLL.

Theorem 17.4. Given the setting of Theorem 17.2, the resampling algorithm computes
an assignment of values to V inducing Ay, ..., A,, while resampling each event A; at
most ©(A;)/(1 — x(A;)) times in expectation.

The rest of this chapter is focused on proving Theorems 17.2 and 17.4 in the more
concrete setting with variables V. We follow the proof of [MT10]. We mention that
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Theorem 17.2 can be proven without the existence of V and we refer to [AS16, §5.1]
for this proof (which is shorter).

17.3 Analysis of the resampling algorithm

The high-level goal is to bound the total number of resampling steps taken by the
resampling algorithm, in expectation.

Recall that the algorithm selects events to sample in arbitrary order. For the sake
of analysis we fix any deterministic or randomized mechanism to select these events.
Each instance of the resampling algorithm can be associated with a log where we
list the sampled events in chronological order. (E.g., A5, A7, Aj1,As, ...) Note that
a single event may occur multiple times in the log. Let L € Z-, U {oc} denote the
(randomized) length of the log. We want to bound the expected length of the log,
E[L].

Witness trees. Moser and Tardos’s [MT10] argument is based on analyzing auxiliary
rooted trees called witness trees. A witness tree is defined as a (nonempty) rooted

tree where each node is labeled by an event A;. We only consider witness trees with
the following additional properties.

(a) If a node labeled A; is a child of a node labeled A;, then A; ~ A;.
(b) If two nodes labeled A; and A; have the same depth, then A; ~ A;.

For each prefix of the log, containing (say)
i entries, we associate a witness tree T} con- (’X‘V‘Kl‘l'x!), (% NZN ), (‘x-,‘isl'xq‘)‘
structed as follows. Let A;,...,A; be the (x‘\h(._‘\lxs\, (Xa, 23, %), (% Ny V)
event labels of the first ¢ entries in the log,

where ¢ < L. We process the events in reverse ('x\\l‘?:.\l?‘“b

order. First, we create a root labeled by A;,. _

Then, for j =i — 1 down to 1, if A;, shares (11,7-3,7(63 (‘K‘V'X-\\I'Xs\
variables with an event labeling of a node N

in the tree, then N be the node of greatest ('K,_V')—(S\I‘XD

depth, and create a new child of N labeled by
Aj;. (If A, is independent of all nodes in the
tree, then we do not create a node for A4;;.) (’X.N'XI‘J‘XD

This process produces a rooted tree with at most ¢ nodes. We see that the tree
satisfies property (a) above because a node with label A; is made a child of a node
with label A; only if A; and A; share at least one variable. Property (b) follows from
the fact that when introducing a node n with label A;, we always make n a child of
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the node n’ with maximum depth among those labeled by an event A; that shares a
variable with A;.

We highlight one observation about this construction that will be particularly
useful later on.

Observation 17.5. Consider a prefix of the log with witness tree T'. Let e; and ey be
two entries in the log with ey listed before ey, labeled by events A;, and A,,, respectively.
If A;, ~ A;,, and ey is a node in the witness tree T', then ey is also a node in the
witness tree at depth strictly greater than e;.

Fori=1,2,..., when ¢ < L, let T} be the tree certificate associated by the first ¢
events Aq, ..., A; in the log. For indices i > L, we let T; denote a null value ) (not
equal to any witness tree). We can express the expected length of the log in terms of
the probabilities of each tree arising at each prefix of the log, as follows:

E[L] =) > P[T;=T], (17.2)

ieN T
where the inner sum is over all certificate trees.

Lemma 17.6. For all distinct i,j € [L], T; # 1.

Proof. Let i < j. To have T; = Tj, the ith and jth entry of the log must correspond
to the same event Aj.

Suppose that is the case. Then every node added to Tj, including the node
corresponding to the ¢th entry, will also be added to 7). Since Tj also includes a node
for the jth entry, this shows that |7}| > |T;|, hence T; # T;. O

The fact the all T;’s are distinct allows us to simplify (17.2) to

E[L] <) P[T =T; for some 1.
T

Next we analyze the probability that a fixed wtiness tree T arises (anywhere) in
the log. For a witness tree T', let

p(T)= II  PlA]

labels A; in T
where the product ranges over all events A; labeling nodes in 7', with multiplicity.

Lemma 17.7. Let T be a fized witness tree. The probability that T appears in the
log, P[T; =T for some i|, is at most p(T).
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Proof. Consider the following random procedure which we call checking T. Let
A Ay, ., Ay list the labels of T in decreasing order of depth (starting with a leaf,
and ending at the root). For each A;, in order, we resample S;,. We say that this
procedure of checking T passes if for each A;;, resampling S;; induces A, .

The probability that T passes the check is exactly p(T"). We want to show that
the probability of T" occurring in the log is bounded above by the probability that T
passes the check.

ISt | md | 3cd 44,
V samPe. | sample. | e | sompie | ST S| ™

KXo | @] @ | [ @] x| x| o

[0} (2) B) [C)}
) 52 xz Xl X: X; Xlls) X;Q x:.ﬂ o

Q]
X}: X(;) XS’ X(:n X;s) th) Xév) —

Recall that the algorithm resamples the variables V repeatedly, and each variable is
sampled independently. We imagine generating, for each variable, an entire (infinite)
sequence of samples ahead of time, and then running the resampling algorithm on
these fixed sequences of samples. Here the first sample of each variable is used for
the initialization. In this scheme, we associate each log-entry e, corresponding to
resampling for an event A;, the set of sampled values for S; before resampling that
induced A;. The sets of sampled values associated to each log entry are disjoint.

Now fix a set of samples which induces a particular log. Whenever T' occurs on
the log, we check T using the same fixed set of samples. That is, when the check
processes A;; and resamples S, for each variable in S;;, we use the next sample for
that variable not used from processing other events previously in the check. We will
show that T" occurs in the log only if 7" passes the check (with respect to the fixed
sample). This implies that the probability that 7" occurs in the log is bounded above
by the probability that T" passes the check, and completes the proof.

Fix a node N in the tree T" which corresponds to a fixed entry e in the log. Let A;
be the label of N and e, and let X € S; be any variable in its support. We want to
show that both the value for X associated with the event e, and the value of X drawn
by the checking procedure when processing N, corresponds to the same sample of X.
Now, the resampling procedure uses the jth sample of X where j is the number of
entries in the log, up to and including A;, labeled by an event that depends on X. The
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tree check uses the kth sample of X where £ is the number of events chronologically
before and including A; in the checking process that has X in its support.

We want to show that j = k. If this is true for all variables X € A;, then since
the sample corresponding to log entry e induced A;, the checking procedure will also
induce A; when processing the node n. Taken over all nodes n, we conclude that the
witness tree T" passes the check.

To show that j = k, consider any log entry ¢’ that (a) comes before e and (b) is
labeled by an event A; that also depends on X. As observed above, the construction
of the tree certificate implies that there is also a node N’ corresponding to e’, and N’
has depth strictly greater than N. Meanwhile any entry €’ that (a) comes after e and
(b) is labeled by an event depending on X is either not in the tree or appears at a
depth strictly less than n. This implies that 7 = k in the sense described above, and
completes the proof. O

[t remains to bound the sum of p(7) over all witness trees 7. We break this down
by the event labeling the root.

Lemma 17.8. Let T; be the family of witness trees with root labeled by A;. Then

Yt < 10

TeT;

Proof. Consider the following Galton-Watson branching process producing a tree in
T:.

In the first round we introduce a root labeled A;. Each round, for each node N
introduced in the previous round labeled by an event A;, we do the following. For each
event Aj, with Ay ~ A; (including A, = A;), with probability x(Ay), we introduce a
child of N labeled by Ag.

The process terminates when no new vertices are introduced in a single round.
(The process may continue indefinitely).

Fix a particular tree T' € 7T;. Let gy denote the probability that T"is produced by
the Galton-Watson process. For each node N € T', let Ay denote the event labeling
n. Let By denote the set of events Ay such that A, ~ Ay, but the process did not
produce a child of N with label A;. We have

II =(Ax) TI (1—=(Ap).

NeT Ar€BN

qr = x(Az)

Here, [Tner (An)/x(A;) is the probability of sampling all the nodes that are in the
tree, and [[yer [1a,en, (1 — 2(Ax)) is the probability of not sampling all the potential
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nodes that were left out of the tree. For this second term, we have

II II —=(A))=0- .r(A,-))HNET [Lay:a,ma, (1 — 2(A1))

NET ALEBN [Tyer(1 —x(Ag))

since every A omitted from By appears as the label of another distinct node, and
these omitted events cover all the nodes except the root. This leads to the cleaner
bound,

1 —x(Ay) z(An) .
qr = :L‘(Al) H 11— (AN) H (1 (Ak))

NET Ap~AN

1—az(A)

neTl Ak ~AnN
Ar#AN

Now, by plugging in the inequality (17.1) assumed in the theorem, we have

p0) = T Pl < ot T 0= = 20
A7y ’

Summing over all T' € 7;, we have

> p(T) < T (A

TeT:

ZQT§1 2(A)

Te72

The last inequality (a) observes that the Galton-Watson produces at most one tree,
hence all probabilities g7 sum to at most 1. O

Now we complete the proof of Theorem 17.2. For the expected length of the log,
we now have

1) < S P(T =T for some S;p(T)zé:I;p(T)gélf(x%_

To more precisely bound the expected number of times we resample an event A;, we
observe that A; is resampled only if a tree T" € T;, with root labeled by A;, is produced
by the log. Thus

# times A;
is resampled

< > P[T; =T for some i] < Zp(T)SZ:ll—x(Ai)’

TeT; TET;

as desired.
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17.4 Additional notes and materials

We refer the reader to [MT10] for extensions including parallelization, a lopsided
LLL condition, and derandomization. Additional applications of the local lemma
can be found in [AS16]. We refer to [Tao09] for an alternative, information-theoretic
perspective on Moser’s [Mos09] original proof technique.

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

17.5 Exercises

Exercise 17.1. A hypergraph is a generalization of an undirected graph where each
edge may have more than 2 endpoints. A hypergraph has uniform rank k if every
edge contains exactly k points. A hypergraph is k-regular if each vertex is incident to
exactly k edges.

Design and analyze an algorithm that, for k sufficiently large?, takes as input a
k-regular hypergraph of uniform rank &k and either: (a) outputs a vertex coloring such
of 2 colors so that no edge is monochromatic, or (b) declares that no such coloring
exists.

Exercise 17.2. Recall that a proper vertex coloring of an undirected graph G is
one where no two adjacent vertices have the same coloring. Here we consider vertex
list-coloring, where each vertex v is given a finite list L, of colors, and we want a
proper vertex coloring where each vertex is assigned a color from a list.

Design and analyze an algorithm that, given an undirected graph G = (V, E) with
maximum degree A, and lists of colors L, for each vertex v of size |L,| > 10A, either
computes a proper vertex list-coloring or declares that no such coloring exists.

2That is, the algorithm should work for for all k¥ > ¢ for some universal constant c¢. ¢ = 9 is
possible.
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Chapter 18

DNF counting

18.1 TUnbiased estimators

Consider a unit disk D of radius 1, centered at 0. The area of D is 7. Let p € [—1,1]?
be a uniformly random point in the unit square. We have

areaof D 7
PpeD)=——=—.
[p € D] 1 1
So we can try to estimate 7 by repeatedly sampling points in [—1, 1]? and counting
the number of samples lie in D. Let p; ...,pr € [—1,1]* be independently sampled

uniformly at random. For each t € [T, let

&:{1ﬁmeD

0 otherwise.

Consider the sum Y% | X,/T. We have p = E[Zthl Xt} = Tw/4. The Chernoff
bound states that

1 - T

Pll=) Xr——

7

for universal constants Cp, C7 > 0 (for sufficiently large 7"). In particular, C' =

O(log(n)/e?) guarantees e-error with high probability of success.
Of course this is just a standard application of concentration. However, to apply

concentration, we needed the fact that 7/4 was at most a constant. In general, the
concentration argument only gives a tail inequality of the form

T
S Xp — | > | < oot < 0T

t=1

>el <P = €

_Ce?
e Ce TE[X}’

for T' independent trials of an unbiased and bounded estimator X, for some constant
C > 0. We need T' > 1/Ce* E[X] for concentration to kick in.
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Above, E[X] = /4 = .785...; so 1/ E[X] was not significant. If E[X]| were
exponentially small, then we would need exponentially many trials. But there are also
basic settings where the most natural unbiased estimator may be exponentially small.

18.2 DNF counting

Let ¢ be a DNF (disjunctive normal form) formula with n variables and m clauses;
e.g.,

(X1, xp) = (@1 AZg A ANaxp) V(T2 A ATpq)

It is easy to decide if a DNF formula is satisfiable. Consider instead the problem of
counting the number of satisfying assignments to DNF.

The obvious unbiased estimator samples an assignment x1, ..., z, € {true, false}
uniformly at random, and tests if p(z1,...,x,) = true. Then the number of satisfying
assignments is 2" times the probability that the formula is true. Alas, the probability
that ¢(z1,...,2,) = true may be exponentially small, in which case exponentially
many samples would be needed to get a reasonable approximation.

Let A = {true, false}" be the family of all possible boolean assignments. For
each clause i € [m], let S; C A be the family of satisfying assignments for the ith
clause. The total number of satisfying assignments is |U; S;|.

A more general view of our setup is as follows. We have n subsets Sy,...,S,. For
each i, we know |S;|, and how to sample a point « € S; uniformly at random. Our
goal is to estimate the size of the union, |S; U---U S,|, but it is hard to do so directly.
Can we use our knowledge about the individual S;’s to infer the size of the union?

Now consider the ratio

Ui Sil
= :
>l Sil
Since we can calculate the denominator explicitly, an estimate p gives an estimate
for the numerator. Crucially, 1 > 1/m because each satisfying assignment in the
numerator appears in at most all m sets in the denominator. How can we estimate 7
The denominator counts the satisfying assignments in the S;’s with repetition.
We can think of this as the number of pairs (¢, z) where i € [m] and x € S;. The
numerator counts the satisfying assignments in the S;’s without repetition. This
equals the number of pairs (i,z) where i € [m|, x € S;, and i is the first index such
that x € S;.
So we want to sample from the denominator, and see if it is in the numerator.
This can be done as follows:
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1. Pick a clause i € [m] in proportion to |S;|, and an assignment x € S;
(satisfying the ith clause) uniformly at random.

2. If 7 is the first clause satisfied by x, return 1. Otherwise return 0.

This estimator can be implemented in polynomial time. Its expected value is u. Since
p > 1/m, the average of O(mlog(n)/e?) independent trials gives a (1 =4 €)-estimate
of p with high probability.

18.3 Additional notes and materials

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

18.4 Exercises

Exercise 18.1. Design and analyze a polynomial time subroutine implementing the
unbiased estimator in Section 18.2. (The faster the better.)

Exercise 18.2. Let f(xy,...,x,) be a DNF formula with m clauses and n random
variables. Let py,...,p, € [0,1], and € € (0,1). Consider the random assignment x €
{false, true}" where for each variable i independently, we have P[x; = true| = p;.

Design and analyze a randomized algorithm that estimates the probability that
f(z) = true up to a (1 & €)-factor with high probability.!

"Hint: Define the mass / probability measure u(S) of a set S € A by u(S) = Plze S] =
> yes Plz = yl. Consider the measure of each S;, and the measure of the union S U--- U S,,.
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Chapter 19

A Linear Map of the Web
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Figure 19.1: Map of a small part of the world wide web around wikipedia.org [CW].
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19.1 Ranking the web

The world wide web is a large and messy place. As of March 2022, http:
//worldwidewebsize.com estimates that there are 2.97 billion indexed webpages.
Even more amazing is that modern search engines, starting with Google, are able to
process, organize and index this nearly unbounded corpus and make it useful. You
can query for a topic of interest, and the search engine returns a long list of relevant
websites, almost immediately. More often than not, you find what you are looking for
within the first few listed results. This is utterly amazing, and we basically take it for
granted.

It is one thing to identify all the web pages containing (or relevant to) a search
query. This requires crawling the internet, and building a huge index that roughly
identifies which keywords appear where. Some of the randomized data structures
discussed earlier may be helpful for managing this task. But even within a search
query, there seems to be an unlimited number of pages about a given topic, and a lot
of it is junk. There is still another challenge to identify the best pages for the query.
How do we separate the good websites from the bad? We should keep in mind the
scale of the world wide web. It is pointless to try to evaluate the websites individually.
This is a large scale ranking problem.

Modern search engines are based on the idea that the link structure of the world
wide web reveals some sense of importance among the websites. When we write a
paper, we cite the references that support or inform our argument. Likewise, web
sites link to other websites and thereby implicitly bestow some approval. Another
appeal of analyzing links is that we can model everything in basic graph theory, where
we have good algorithms and sound analysis. The link structure gives a good starting
point for our first idea for ranking webpages.

Idea 1. Score each website equal to the number of other webpages linking to it.

scorer(v) = Y L.

(u,v)EE

One feature of score; is that every link out of a vertex w is worth 1 point. But if u
has many outgoing links, shouldn’t that dilute the “approval” bestowed by u? As an
analogy, suppose we have two lists of movies. One lists the top 10 movies of all time,
and the other lists the top 100 movies of all time. Shouldn’t it be worth more to be
on the first list? Our next proposal for ranking scales down the value of a link (u,v)
by the number of outgoing edges of u, so that the total sum of links leaving u is 1.

Let d*(u) denote the number of edges leaving a vertex u, a.k.a. the out-degree.
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Idea 2. Score each website v as the sum, over all other webpages u linking to v, of 1
divided by the number of outgoing links from w:

scores(v) = Y

u:(u,v)EE

1
d*(u)

Unfortunately score; can be manipulated too. To drive up scorey(v) for a website
v, one can create many fake websites u with a link to v. Perhaps, when evaluating a
link (u,v), we should consider whether u is much of an authority to begin with.

Idea 3. Score each website v equal to the weighted sum, over all other webpages u
linking to it, of the score of u divided by the number of outgoing links from w:

3 scores(u) '

scoreg(v) = ()

u:(uw)EE

scores(v) attains a sort of self-consistent nirvana. For example, the weight of a link
(u,v), in attributing authority to v, is adjusted in proportion to the authority of w.
The total authority distributed by a webpage u is exactly equal to u’s own authority,
scoreg(u).

While this recursive relationship is appealing, there is no reason, a priori, why
such scores should exist.

Today’s discussion is about how {scores(v), v € V'} does exist, and the structure
and interpretations thereof. This happy miracle is entirely due to the fact that
the values {scores(v),v € V'} satisfy a particularly well-structured linear system of
equations. As such, our discussion will soon be translated into linear algebra. An
important part of the structure comes from a probabilistic interpretation of the linear
system.’

The goal of this discussion is to prove the following theorem (in more general
terms). Recall that AV = {x ERY): S ey 1y = 1} denotes the set of probability
vectors over V.

Theorem 19.1. There exists a vector © € AV such that

PR S— (19.1)

u:(u,w)er dr (U)

for all v € V. If G 1is strongly connected, then this vector is unique and strictly
positive.

I'Naturally, the mathematics we discuss existed long before search engines and similar ideas had
been applied elsewhere.
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To try to understand where such an x comes from — and in particular, how we
can assert that it describes a distribution over B — consider the following random
walk on G. At each step, you are on some vertex u. You choose an outgoing edge
(u,v) € E uniformly at random, and step to v. This may send you walking chaotically
all over the graph. On the world wide web, this is like randomly surfing the web
where you keep following randomly chosen links. If the links tend to point to useful
websites, then over time your random walk should stumble upon good web sites more
often then a uniformly random sample of the web. Now, depending on where you
start, after some number of k steps, there are different probabilities of where you
would end up. As k increases, we might hope this reaches some kind of equilibrium,
where the distribution is the same or close to the same between to kth and (k + 1)th
step for sufficiently large k. This brings us to the notion of a stationary distribution.

Definition 19.2. Fix a random walk on a set of vertices V. A set of probabilities
x € AV is a stationary distribution for the random walk if taking a random step from
the distribution x produces the same distribution x.

Consider again Theorem 19.1, and consider the recursive relations satisfied by
reAV:

"W

u:(u,w)eE

for all v € V. In our random walk, from a given vertex u, we choose an outgoing
edge (u,v) with probability 1/d*(u). In particular, if u is chosen from a random
distribution € AV, then the probability of then stepping to a particular vertex v is

ZGE d* (u“) .

w:(u,v)

For the vector = asserted by Theorem 19.1, this sum equals x,. That is, = is the
stationary distribution of a random walk on G. We can restate Theorem 19.1 as
follows.

Theorem 19.1, restated. FEvery random walk on a directed graph G has a stationary
distribution. If G is strongly connected, then this distribution is unique.

19.1.1 PageRank

The actual PageRank algorithm proposed in [PBM-+99] is slightly different. We
augment the random walk thought experiment described above with a small probability
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Figure 19.2: An example of PageRank on an 11 vertex graph [Wikal.

« of restarting the walk from a page chosen uniformly at random. Otherwise (with
the remaining probability 1 — «), we continue the random walk as described above.
The same conclusion holds for this random walk.

Theorem 19.3. Let G = (V, E) be a directed graph, and let o € (0,1). There exists
a unique vector x € AV such that for allv €V,

z,=(1—a) Z df&)—i—

u:(u,w)eE

S0

The PageRank formulation has some additional convenient properties compared to
general random walks. First, the vector x is guaranteed to be unique, and has strictly
positive coordinates. (Implicitly, it is the stationary distribution on the directed graph
augmented by weighted edges between all pairs, which by Theorem 19.1 is unique.)
Second, it can be calculated more directly. We will come back to this point at the
end of our discussion in Section 19.6.

19.2 A linear map of the web
Recall that a function f : R®™ — R" is linear if it satisfies the following:

flx+y) = fx)+ f(y)

Let A:RY — RY be the linear map encoding the directed edges as follows. For a
vertex v, let e, € {0, 1}V be the vector with 0’s everywhere except for 1 in the vth
coordinate. We define A by setting (Ae,) € {0, l}v to indicate the outgoing neighbors
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(Ae,) € {0,1}V

0
w1 1 w1
0
0
/ W2
w3 :
0
1 ws
0

Figure 19.3: The adjacency vector (Ae,) of a vertex v.

of v. More explicitly, A is defined by

1 if (v,w) € E

0 otherwise.

(ew, Aey) = (Aey)w = {

See also Fig. 19.3. Note that the graph G is undirected iff A is symmetric.
More generally, we might have weights on the edges of the graph. Then we would
define A : RV — RY by

weight of the edge (v,w) if (v,w) € E

0 otherwise.

(ew, Aey) = (ATe,)y = {

Let us rehash our discussion on scoring websites in terms of the linear map. We
have

scorer (v) = (ey, AL) = (Aey)w.

w

We also have

dt(u) = (1, Ae,).
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Let D = diag(dt) € RV be the diagonal matrix induced by d*. That is, for any
vector x and vertex v, we have

(Dx), = d" (v)z,.

Then we can write scores(v) as

scoreg(v) = | > y = (AD™'1), = <eU,AD_11>.

As for the stationary distribution (scores), we see that the stationary distribution x
must satisfy the equation

& = Rx for the linear map R = AD™': RV — RV

The map R has the property that Rz € AV for any 2 € AY. Any linear map
A :R"™ — R™ mapping A" to A" is called a stochastic linear function.

19.3 Eigenvectors

Let A :R™ — R™ be a linear map. An eigenvector of A is a nonzero vector x # 0 such
that

Ax = \z

for some scalar value A € C. The scalar A is called an eigenvalue of A, and here it is
the eigenvalue corresponding to the eigenvector x.

Alternatively, a value A € C is an eigenvalue iff the linear map (A — AI) : R* - R"
is not invertible. Indeed, any eigenvector x corresponding to A\ gives a second vector

(besides 0) such that (A — )z = 0.

Lemma 19.4. The set of eigenvectors corresponding to an eigenvalue \ form a vector
space.

The dimension of the subspace corresponding to an eigenvalue A is called the
multiplicity of the eigenvalue. For any eigenvalue A of A : R" — R", the multiplicity
of A is equal to n — rank(A — AI).
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Existence of eigenvectors. A priori, it is not clear why every matrix should have
an eigenvector.

Lemma 19.5. Let A: R"™ — R" be a linear map. Then A has an eigenvalue X € C
and an eigenvector x € C".

Proof. Fix any nonzero vector v. Recall that any set of n + 1 vectors in R™ is
linearly dependent. In particular, the set v, Av,..., A"v is linearly dependent. Put
alternatively, there is a nonzero, degree k < n polynomial p(z) = apa® + - - - + o such
that

p(A)v = 0.
By the fundamental theorem of algebra, the polynomial p(z) can be expressed as
pla) = (& i) —ro) - (= 1)
where rq,...,r, € C are complex roots of p(z). Then
p(A)v=(A—=rD(A—=rd) - (A=rpl)v=0

imples that some A — r;I maps a nonzero vector to 0. The corresponding root r; is
an eigenvalue. O]

Tranposing and Eigenvalues The eigenvalues and eigenvectors of a matrix A and
its transpose AT are closely related. This is primarily because A and its transpose
AT have the same rank, and eigenvalues are ultimately concerned with values \ for
which A — AI is not full rank.

Lemma 19.6. Let A : R® — R" be a linear map. Then A is invertible iff AT is
invertible.

Proof. Suppose A is invertible. We claim that AT is invertible with inverse (A~1)7.
Indeed, for any two points z,y, we have

<m, (A_l)TATy> = <A_1x,Ay> = <AA_1x,y> = (z,y).

Since this holds for all x and y, we have that (A™")TA = I. That is, (A™")7 is an
inverse for A. This proves the “only if” whereas we claim “if and only if”; the “if”
follows symmetrically as (AT)T = A. O

Lemma 19.7. Let A : R® — R" be a linear map.. Then A and AT have the same
etgenvalues with the same multiplicities.
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Proof. Recall that for any map L : R® — R", L is invertible iff L7 is invertible, and
(LT)~' = LT. Now suppose that ) is an eigenvalue of A. Then A — I is not invertible,
hence (A — AI)T = AT — X[ is not invertible, and so A is an eigenvalue of A. The
multiplicities are equal because the

rank(A — AI) = rank((A = AI)T) = rank(A — \I).
m

Lemma 19.8. Let A : R™ — R"™ be a linear map.. Let x be an eigenvector of A and
let y be an eigenvector of AT corresponding to distinct eigenvalues. The (x,y) = 0.

Proof. Let x have corresponding eigenvalue A and let y have corresponding eigenvalue
. We have

Ma,y) = (Az,y) = (z, ATy) = p(,y).
If A # p, then (z,y) = 0. O

Let us now restate Theorem 19.1 in our new language of eigenvectors and eigen-
values.

Theorem 19.1, in terms of eigenvectors and eigenvalues. Let G = (V, E)
be a directed graph and let R : RV — RY be the map corresponding to the linear
map corresponding to the random walk on G. Then R has an eigenvector v € AV
with eigenvalue 1. If G is strongly connected, then x is the unique eigenvector (up to
scaling) with eigenvalue 1.

19.4 The Perron-Frobenius theorem

Definition 19.9. Let A:R"™ — R™ be a linear map. A is positive if (z, Ay) > 0 for
all v,y € RY, with x,y # 0.

Equivalently, Ar > 0 (coordinatewise) for all nonzero # € R%;. The following
theorem is called the Perron-Frobenius theorem and shows that positive linear maps
have a lot of structure.

Theorem 19.10. Let A : R™ — R" be a positive linear map. Then A has an eigenvalue
A1 with eigenvector x1 with the following properties.

1. Ay >0 and z; > 0.
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2. xq is the unique (generalized) eigenvector of \;.
3. 1 1s also the unique nonnegative vector such that Axy > \x1 (up to scaling).
4. Any other eigenvalue p has |p] < A;.”
5. Any other eigenvector of A has at least one negative entry.

Proof. Let
L ={\ > 0 where Az > Az for some z € A"}.

We will argue that the the supremum of L is the desired value \;. To this end, we
first make the following claims about L.

1. L is nonempty.
2. L is bounded.
3. L is closed.

For claim 1, let x € A" with > 0. The Ax will have strictly positive coordinates
because A is positive, and so there is some A > 0 such that Az > \z.
For claim 2, we observe that for A € L, with (say) Az > Az with z € A,,, we have

(1, A1) 2 (1, Az) 2 (1, Az) 2 A,

(a) is because A is monotonic and 1 > z. (b) is by choice of x and A. (¢) is because
T €A,

For claim 3, let A1, Ao, ... be any sequence of points in L that converges to some
A. We want to show that A\ € L. For each i, let 2; € A™ with Az; > \;z;. Since A" is
compact, a subsequence z;,, z;,, ... of the z;’s converge to some z € A™. We have

Ax = A(lim xi]) D lim Az, > lim \;.2; = A\T.
J—00 k—o0 J j—oo Y
(d) invokes continuity of A to pass through the limit.
We have now shown that L is a closed and bounded set with at least one positive
number. Any nonempty closed and bounded set L has a finite supremum, \y, which is

contained in L. By definition of L, there is also a vector x1 € A" such that Az, > A\jz;.
We claim that Axy = \xy.

2We will only prove that |u] < Ap.
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Let y > 0 be such that Ax; = A{(x; +y). Then Azy = \jz; <= y = 0. Suppose
by contradiction that y # 0. Choose € € (0, 1) sufficiently small that

Observe that

Moreover, we have

A((l —e)r + <1’€y>y> < (1—e)Azy @ (1 — ez +y) > /\<(1 —€)xy + <17€?/>y>
Here (e) is because Az > 0 for all > 0 with = # 0. (f) is by choice of y. (g) is by
choice of €. The strict inequality obtained above implies that there is a larger value
than A in L, a contradiction. Thus we must have Ax; = A\, after all.

Note also that x; is strictly positive, as z;1 = A"'Az; > 0. More generally, any
eigenvector of A associated with a positive eigenvalue is strictly positive.

Next we claim that x; is the unique (simple) eigenvector for \; (up to scaling).
Indeed, suppose Ay = Ay for vector y. As mentioned above, we must have y > 0. If
y is not proportional to x, then let z = x — ay where v > 0 is such that z > 0, z # 0,
and z; = 0 for some coordinate 7. Then z would be an eigenvector of A that is not
strictly positive, a contradiction.

Now we claim that x; is the unique generalized eigenvector for Ay, as well. If not,
then there would a vector y not spanned by x; such that

(A= NI’y =0.
Then (A — A1)y is a simple eigenvector of A with eigenvalue Ay, so
Ay = My + ey (19.2)

for some ¢ # 0. By flipping the sign of y if necessary, we may assume that ¢ > 0.
Increase y by a multiple of z; if necessary, we may assume that y > 0. If y > 0 and
¢ > 0, then (2) that there is a value larger than A\; in L, a contradiction. Thus x; is
the unique generalized eigenvector for A;.

Take any other eigenvalue p of A, with eigenvector y. Scale y such that Then

\lly| = |yl = [Ay| < Alyl,
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where |y| denotes the coordinate-wise absolute value of y. Thus |u| € L, and therefore
|ul < 1.

If || = A, then we would have |y| = x; (after scaling) by uniqueness of z;. This,
combined with |Ay| = Aly|, implies (by known facts about complex numbers, which
we omit) that y = ¢?x; for some fixed §. Thus y € span(z;) and pu = ;.

For the last claim, observe that AT also satisfies the hypothesis. Indeed, if 2,y > 0
and neither x nor y equals zero, then

<ATx,y> = (z, Ay) > 0.

Thus AT has (the same) dominant eigenvalue \;, with a positive eigenvector y; € R”.
Now, any eigenvector x of A corresponding to an eigenvalue other than x; must be
orthogonal to y;. If y; is has strictly positive coordinates and (z,y;) = 0, then z must
have at least one negative coordinate. O]

The above proof is essentially due to Bohnenblust; see [Lax07; Bel97].

19.5 Perron-Frobenius for strongly connected random walks

We now extend Theorem 19.10 to random walks. In particular, we will show that there
is always a stationary distribution, and that this stationary distribution is unique if
the underlying graph is strongly connected.

Theorem 19.11. Let A: RV — RY be the linear map of a random walk on a strongly
connected graph.

1. There is an eigenvector x € A™ with eigenvalue 1 and x > 0.
2. x is the unique eigenvector with eigenvalue 1.
3. x is the only eigenvector of A with no negative entries.

4. Any other eigenvalue p has |p| < 1.

Proof. We first note that A has eigenvalue 1. Indeed, because A models a random
walk, we have

AT1 =1,

as can be verified directly. Thus 1 is an eigenvalue of AT and thereby an eigenvalue of
A as well. Now, let x be any eigenvector of A, rescaled so that (1,z) = 1. We claim
that © € A",

Consider the matrix B = £ 3"  A”. We can interpret B as the random walk on
V' induced by the following two steps:
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1. Choose 7 € {0,...,n — 1} uniformly at random.
2. Take 7 steps of the random walk A.

Observe that any eigenvalue p of A corresponds to an eigenvalue of B with value

1 n—1

ﬁ;uv

with the same eigenvectors. In particular, 1 is an eigenvector of x with eigenvalue 1.

Because G is strongly connected, there is a path of at most n — 1 edges from any
point @ € V to any point b € V. Thus B models a random walk with strictly positive
transition probabilities for all pairs of vertices. In particular, B satisfies the positive
assumptions of Theorem 19.10.

Let Ay > 0 and z; € A™ be the “dominant” eigenvector and eigenvalue. We claim
that A\; = 1 and 2; = 2. To this end, consider BY. BT has the same dominant
eigenvalue A\, with a corresponding eigenvector that is also the only eigenvector with
no negative corodinates. We also know that 1 is an eigenvalue of BT with eigenvector
1. So Ay = 1. Theorem 19.10 then implies that x is the unique eigenvector for
eigenvalue 1, and all the coordinates of = are strictly positive.

Let p be any other eigenvalue of A. We claim that |u| < 1. For € > 0, let
Ac=(1—¢€)A+e€B. Let

n—1
€ i
fre=p+— > p'.
ni4
e is an eigenvalue of A, for all ¢ > 0. Note that for all ¢ > 0, Theorem 19.10
applies to A, and in particular A, has dominant eigenvalue 1, and |pu.| < 1. Moreover,
lime o pte = p. Thus |p| < 1.

Any eigenvector other than z is an non-dominant eigenvector of B, and thus has
negative coordinates. O]

19.6 Computing PageRank

The PageRank vector x satisfies the equation

v =(1—e¢Rr+ 1,
n
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where R = AD~! models the random walk on the directed graph, and where 1 € RV
is the all-1’s vector. We can rewrite this as

()r=m)r -t

Recall that the maximum eigenvalue of R is 1; in paricular, 1/(1 — €) is not an
eigenvalue. Thus (1/(1 —€) — R) is invertible. We have

o ((1 —66)71) (1 i A R>11 B %(]_ A-aRr)"L

We can write (I — (1 — ¢)R)™" as the infinite series

(I (1=eR)™ = lim > ((1-OR)"

Thus

T = hmz (1-¢R

(1—6nk’—>oo

The series on the RHS converges quickly for moderate ¢, so in practice one only has
to compute a few terms in the sum.

19.7 Additional notes and materials

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

19.8 Exercises

Exercise 19.1. Let G = (V, E) be a directed graph, not necessarily strongly connected.
Recall that the strongly connected componentsm for a directed acyclic graph. A sink

264


https://ras24.s3.us-west-1.amazonaws.com/RAS24.19+-+Pagerank.pdf
https://ras24.s3.us-west-1.amazonaws.com/RAS24.19p+-+Pagerank.pdf
https://youtu.be/hXKVSIiOof8
https://raf22.s3.amazonaws.com/RAF22.16+-+Pagerank.pdf
https://raf22.s3.amazonaws.com/RAF22.16p+-+Pagerank.pdf
https://youtu.be/bpjktWv00xw

19. Random walks Kent Quanrud
19.8. Ezxercises Fall 2025

component is a strongly connected component with no out going edges; i.e., a sink in
the DAG of strongly connected components. Suppose GG has a unique sink component
S C V. Show that the random walk on G has a unique stationary distribution z € AV
and that z, > 0iff v € S.

Exercise 19.2. Let G = (V, F) be a simple®, unweighted, directed, and strongly
connected graph. We proved in Theorem 19.1 that the random walk G has a unique

and strictly positive stationary distribution 2 € AY. Prove that for all v € V,
Ty > n—(n—‘rl)'

3Simple means that there are no parallel edges.
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Chapter 20

Connectivity and Electricity

20.1 Introduction

Connectivity is one of the simplest graph problems and one that is discussed in every
introductory algorithms class. Let G = (V, E') be an undirected graph with m edges
and n vertices. Two vertices s,t € V are connected if there is a path between them. A
simple graph problem is to decide if two vertices are connected in a graph. Sometimes
we also ask for the path between them.

The problems can be solved by simple search algorithms. The most common ones
are breadth first search and depth first search. Both of these algorithms mark the
vertices that they visit to avoid revisiting vertices. Like Hansel and Gretel dropping
bread crumbs.

Complexity theorists are interested not only in the running time required by
a problem, but also the amount of space required. This is the amount of space
in addition to the input. A natural lower bound for any (nontrivial) problem is
logarithmic in the input size, since we need [log n| bits just to represent the location
of a pointer amongst an input of size n. Complexity theorists ask: what problems
can solved in O(logn) space?

Consider connectivity. Search algorithms like BF'S or DFS need O(n) space to mark
the vertices. Can (s, t)-connectivity by solved in less than O(n) space? Surprisingly,
the answer is yes. Savitch’s theorem gives a O(logZ(n)) space algorithm, though it is
not polynomial time [Sav70]. Now, can (s, t)-connectivity by solved in O(log n) space?
This is basically just enough space to keep track of what vertex you are currently on
as you search a graph.

Consider the following simple algorithm. Given s,¢ € V', start a random walk from
s, where in each iteration you pick a random neighbor of the current vertex and move
there. Randomly walk for O(mn) steps. If you come across ¢ at any point, then you
know that s and t are connected. If not, then you answer no.

Clearly the above algorithm takes only O(logn) space. You only need to keep
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track of which vertex you are on, and generate a random number between 1 and (at
most) n to randomly select a neighbor. You also need to count the number of steps
you’ve taken so far. When the algorithm answers in the affirmative, you are always
right. Unfortunately, if it answers no, the algorithm could be wrong. Certainly there is
no proof that there is no path from s to t. But today we will show that the algorithm
is correct with constant probability. Therefore you can rerun the experiment O(logn)
times to be correct with high probability.
To frame the analysis we introduce the following definition.

Definition 20.1. Let G = (V, E) be an undirected graph with m edges and n vertices.
Consider a random walk starting from a vertex s. The hitting time from s to a vertex
v, denoted H(s,v) is the expected number of steps until a random walk from s reaches
v. The cover time from s, denoted C(s), is the expected number of steps until a
random walk from s visits every vertex in the graph.

The above quantities may be infinite when the graph is not connected. We can
rephrase the question of (s,t)-connectivity as asking if H(s,t) is finite. Today we will
prove the following.

Theorem 20.2. Let G = (V, E) be an undirected graph with m edges and n vertices.
Let s € V.. Then the cover time C(s) is bounded above by C(s) < m(n —1).

Assuming for the moment that the above theorems are true, and that random
walks can decide (with high probability) whether vertices are connected, there is one
big question left to answer:

Can (s,t)-connectivity be decided deterministically in O(logn) space?

We will return to this question later in Chapter 23.

20.2 Electrical networks

Our analysis will be based on a (perhaps surprising) connection between random
walks and electrical networks. For the sake of our discussion, an electrical network
is an undirected graph G = (V, E) with positive edge weights r : E — Ry called
resistances. If one attaches a battery to two vertices s and ¢, it induces a current that
(in our discussion) is a unit flow from s to ¢. As the electricity flows from s to ¢, it
is said to take the path of least resistance. What is the path of least resistance? A
computer scientist or operations researcher might suggest this is the shortest path from
s to t with respect to resistance. But physics does not do combinatorial optimization;
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physics does calculus. From a calculus point of view, it is more natural to minimize a
sum of squares.

To formalize the model, fix an orientation on the edges. We identify each flow
with a vector f € RF. For each edge e, a positive value f(e) > 0 means that f(e)
units of flow are routed in the same direction as the orientation of e. A negative value
f(e) < 0 means that |f(e)| units of flow are routed in the opposite direction. Then
the electrical flow is the

(s,t)-flow f minimizing the electric energy » r.fr.
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That is, the electrical flow is the solution of a con-
strained optimization problem. The squared terms en-
courage the flow to spread out. While there is still some
preference to shorter paths, rather than put all the flow
along the shortest (s,t)-path, the electrical flow will
spread out such as in the example on the right. (The
flow on the right is not actually the optimum electrical
flow.)

Let us define a linear map B : R — RY that maps flows to the net flows at each
vertex. That is, for a flow f, and a vertex v, we have

(Bf), = net flow of f at v.

The above definition is linear in f, so B is a linear map. Let d € RV be the demands
of our problem; namely,

1 ifv=s
dy,=< -1 ifv=t

0 otherwise.

A flow f is a unit (s,t)-flow iff Bf = d. Now, while we are principally interested in
(s,t)-flow, the following discussion extends to any set of flow demands d € RV (the
only requirement being that (1,d) = 0). In the above algebraic notation, the electrical
flow is obtained as the solution to the following optimization problem:

minimize (f, Rf) = ref? over f €R¥ st. Bf =d. (20.1)

eceE

For a fixed electrical network, the quantity above is a function of d. In general,
for d € RV with (1,d) = 0, the effective resistance of d is the minimizing potential
obtained by the electrical flow routing d.

The rest of this discussion is broadly organized into two parts.

1. The first part is about understanding the structure of an electrical flow. This is
based on studying the first-order optimality conditions of (20.1).

2. The second part is about interpreting hitting times and cover times via electrical
networks, and proving the desired bounds.
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20.3 Structure of electrical flows

We have seen the electrical flow minimizes a sum of squares subject to linear constraints.
This already endows a lot of structure to electrical flows by understanding the
optimality conditions of such a problem. The connection to graphs then leads to
further interpretations of these conditions.

20.3.1 Convex optimization s.t. linear constraints

The reader may recall that for unconstrained convex minimization problems, a point
x is a minimum solution iff the derivative of the objective function is 0. This is no
necessarily true in constrained optimization. For linear constraints, however, we know
the following.

Theorem 20.3. Consider a minimization problem of the form
minimize @(x) over x € R™ s.t. Az = b,

where ¢ : X — R is a convex and smoothly differentiable function over a vector space
X, A: X =Y is a linear map, and b €Y is a vector. Let x be a optimum solution
to the problem. Then

¢ (z) = ATy for some y € R™.

Proof. Let ker(A) = {z : Az = 0} denote the kernel of A; i.e., the set of vectors that
map to O.

Claim. ¢'(x) is orthogonal to ker(A). Suppose not. Then there exists z € ker(A)
such that

(' (z),2) <0.
But then for sufficiently small ¢ > 0,
Pz +12) = p(z) + 1 (2), 2) < (),
while
Alx +tz) = Ax +tAz = Az = b.

Then x + tz is not optimal, a contradiction, and proving the claim.
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Now, recall that the image of A, denoted by im(A), is the set
im(A) < {Az :z € X},
and that the coimage of A, denoted coim(A), is the subspace of X orthogonal to
ker(A):
coim(A) = X/ ker(A) = {z € X : (x,y) = 0 for all y € ker(A)}.

Note that we have shown that ¢'(z) is orthogonal to A. Basic linear algebra (sometimes
called the “fundamental theorem of linear algebra”) states that A and AT both induce
isomorphisms (i.e., one-to-one linear mappings) between coim(A) and im(A). The
one-to-one mapping A7 : im(A) — coim(A) implies that there exists y € Y such that
ATy = ' (2). O

20.3.2 Ohm’s Law

If we apply Theorem 20.3 to the electrical flow problem, then we obtain the following
identity called Ohm’s law. The vector p € RV in the following theorem is called the
electric potentials induced by d.

Theorem 20.4. A flow f € RF subject to demands d is the electrical flow iff there
exists p € RV such that f = R~'BTp.

Proof. Suppose f is the electrical flow. Observe that the gradient of the objective
function is Rf. By Theorem 20.3, there exists ¢ € RV such that 2Rf = Bq; hence
p = q/2 is the desired set of electrical potentials.

Conversely, suppose f = R~'B”p for some p € RV. Let ¢ be any other flow with
Bg = d. Recall that for any convex function ¢, we have

e(y) > p(x) + (¢'(2),y — 7).

For our convex function ¢(f) = (f, Rf)/2, we have

(9.Rg) — (f,Rf) 2 2Rf.g— ) 2 2(B"p.g ~ [)

Here (a) applies convexity of ¢(z), and (b) substitutes » = R~!Bp. O
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20.4 Effective resistance and the Laplacian

Recall that the Laplacian of a graph G with edge weights w(e) is the symmetric
matrix L : RV — RY defined by

(x,Lz) = > w(e)(w, — ,)°.

e={u}eFE
Lemma 20.5. Let w(e) = 1/r. for all e. Then L = BR™'BT.

To prove Lemma 20.5, since both matrices are symmetric, it suffices to show
that (x, Lz) = <x, BR_lBTa;> for all x. We leave this calculation to the reader as
exercise 20.3.

Recall that the effective resistance of d is the minimum energy attained by the
electrical flow. The effective resistance has the following closed form, drawing a direct
connection between the electrical flow and the pseudoinverse of L. Note that L~'d is
well-defined because we assume G is connected and d is orthogonal to the kernel of L;
ie., 1.

Theorem 20.6. Given a connected electrical network with resistances r, let L be the
Laplacian of the corresponding undirected graph with weights 1/r. Let d be a fixed
set of demands inducing an electrical flow f with electrical potentials p. We have the
following.

1. Lp=d.
2. (effective resistance of d) = (d, L~'d) = (p, Lp) = (p,d).

Proof. Let f be the electrical flow and p the electrical potentials with respect to d.
For the first claim, we have

Lp=BR 'BTp=Bf =d.
For the second, we have
(f,Rf) 2 (R'B"p, RR™'B"p) = (p, Lp) = (Lp,L™"Lp) © (d,L7"d)

where (a) is by Ohm’s Law. O
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20.5 Effective conductance
Consider the following optimization problem.
minimize (p, Lp) over (p,d) = 1. (20.2)

In the special case of d = 1, — 1, we are seeking the potentials p minimizing (p, Lp)
subject to s and ¢ being separated by 1 unit. The optimum value to (20.2) is sometimes
called the effective conductance.

The first order conditions tell us that the optimum solution p* satisfies 2Lp* = Ad,
hence p* = (\/2)L~1d, for some scalar \. To identify A\, we plug into (p*,d) = 1: We
have

1= (p*,d) = ;\<d, L*1d>,

hence

2

A= —
(d, L=1d)

Note that 2/\ = (d, L~'d) is the effective resistance of d. Returning to (20.2), we
have

)\2

(", Lp*) = (Lp*, L' Lp*) = Z<d’ Ld) = 1

(d, L='d)
The following theorem summarizes our developments.

Theorem 20.7. (20.2) has optimum solution p* = L~'d/2(d, L~'d) and optimum
value 1/(d, L7'd).

In particular we have the following symmetry between the effective resistance and
the effective conductance of a demand vector d.

Corollary 20.8. For any demands d, the effective resistance of d is the reciprocal of
the effective conductance of d.

An alternative interpretation of this symmetry is as follows.

Corollary 20.9. For any d-flow f, and any potentials p with (p,d) = 1, we have

(f,Rf){p,Lp) > 1.

The inequality is tight for a unique f and p (modulo 1).
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20.6 Hitting times and cover times

Let us now return to our original discussion on random walks, where we were particu-
larly interesting in understanding the hitting time and cover times of an undirected
graph. We restate their definitions for the reader’s convenience.

Definition 20.1. Let G = (V, E) be an undirected graph with m edges and n vertices.
Consider a random walk starting from a vertex s. The hitting time from s to a vertex
v, denoted H(s,v) is the expected number of steps until a random walk from s reaches
v. The cover time from s, denoted C(s), is the expected number of steps until a
random walk from s wvisits every vertex in the graph.

Fix t € V. We want to analyze the hitting time H(v,t) for all v € V. We have
H(t,t) =0,

by definition. For other vertices v # s, we have

1
H(u,t) =1+ —— H(u,t)
deg(u) (H%E

by definition of the random walk.
The key idea interpret this system of equations in terms of electrical networks.
Define vertex potentials p € RV by

pu = H(u,t).
The vertex potentials induces a flow f = Bp, which more explicitly, carries flow
f(u,v) = py = pu.

We have p, = H(t,t) = 0. We also have the following equivalent equations for all
u # t.

1
S

deg(u) {(uv)€E)}

We can rewrite this as
Z (pu - pv) = deg(u)
{(u,v)eE}

Recall that f(u,v) = p, — p,. Thus p encodes a flow routing deg(u) units of flow out
of each w # t and 2m — deg(t) units of flow into v. In terms of hitting times, we have
shown the following.
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Lemma 20.10. Let G = (V, E) be an undirected graph with m edges and n vertices.
Lett € V. Let p be the electrical potentials routing the demands

—deg(u) if u#t
Y 2m — 3, deg(u)  otherwise.

Then for all u,

H(u,t) = py — pr.

Lemma 20.11. Let G = (V, E) be an undirected graph with m edges and n vertices.
Let s,t € V.

H(s,t) + H(t,s) = 2m(effective resistance from s to t).

Proof. Let p= H(-,s) and ¢ = H(-,t) be the electrical potentials encoding the hitting
times to s and to t, respecitviely. Then

H(uvv)+H(v7u):(pu_pv)+(QU_QU) =Ty =Ty

for r = p — q. The corresponding flow is the difference between the flows induced by
p and ¢:

BTr = BTp — B1y.

Then BTr routes 2m units of flow from s to ¢t. This means that (1/2m)r is the
electrical potential required to route one unit of flow from s to t. Let d be the
demands for routing one unit of flow from s to ¢. we have

H(s,t) + H(t, s) = (r,d) = 27171@», BB™r)
1

= 5 (BT BTr) = 2m({(1/2m)Br, (1/2m)Br).

as desired. ]
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Theorem 20.12. Let e = (s,t) € E. Then
H(s,t)+ H(t,s) <2m.

Proof. The flow sending one unit of flow along e is an (s, t)-flow with electric energy
1; the electrical flow is only better. Plugging 1 into Lemma 20.11 as an upper bound
on the effective resistance gives the bound we seek. O]

Theorem 20.2. Let G = (V, E) be an undirected graph with m edges and n vertices.
Let s € V.. Then the cover time C(s) is bounded above by C(s) < m(n —1).

Proof. Fix any spanning tree T, and fix a traversal on T starting and ending at 7',
which corresponds to a fixed sequence of oriented edges of T, with each edge appearing
once in each direction. Imagine trying to simulate this walk randomly: for each edge
(u,v) in sequence, starting from wu, we do a random walk from u until we hit v. Then
we do the same for the next edge in the spanning tree. The expected time to traverse
an edge e = (u,e) € T'is H(u,v). The total time over the entire spanning tree is

> H(u,v)+Hwu < > 2m<2m(n-—1).

e={u,v}eT e={u,v}€T

20.7 Additional notes and materials

See also [DS84].

Spring 2024 lecture notes. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
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20.8 Exercises

Exercise 20.1. Let G = (V, E)) be an undirected graph with m edges and n vertices.
Let s,t € V be connected by a path of k£ edges. Show that

H(s,t) < km.

Exercise 20.2. The goal of this exercise is to understand why we required the graph
to be undirected. Design and analyze, for n € N, an unweighted, strongly connected
and directed graph G = (V, E) on n vertices and two vertices s,t € V where the
hitting time from s to ¢ is exponential in n.

Exercise 20.3. Complete the proof of Lemma 20.5.

Exercise 20.4. This model is inspired by the following scenario. Suppose Alice and
Bob are separated and lost in a big city. They both decide to start randomly walking
around the city. How long does it take, in expectation, for Alice and Bob to meet?

To model this formally, let G = (V, E) be an undirected graph with m edges and
n vertices. Alice and Bob start on two vertices s and t, respectively, and they take
independent random walk in synchronized fashion. That is, in each step, Alice and
Bob independently choose a uniformly random edge incident to their current vertex,
and traverse that edge. The random walks end when Alice and Bob meet each other
at the same vertex.

Now it might be impossible for Alice and Bob to ever meet. For example, if G
consists of a single edge {s,t}, then Alice and Bob will keep switching vertices and
never meet. But suppose we promise that it is possible for Alice and Bob to meet.
More specifically, suppose there is a vertex x for which there are /-edge walks from
both s to x and from ¢ to z in G. Propose and prove an upper bound, the smaller the
better, on the expected number of steps until Alice and Bob meet, as a function of m,
n, and possibly /; or alternatively, prove that the expected number of steps is +oc.
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Chapter 21

Spectral analysis of undirected random walks

21.1 The Laplacian of a graph

Let G = (V, E) be an undirected graph with positive edge weights w € RE;. In our
analysis of electrical networks (Chapter 20), we briefly came across the Laplacian form
of G. We reintroduce the Laplacian L : R — RY of from a different perspective.

We first show how to model a single edge by a rank-1 matrix; an entire graph is
then modeled by the corresponding weighted sum over its edges. We will work in the
n-dimensional vector space RY — one coordinate per vertex. Edges are modeled as
matrices in RV*V.

The Laplacian of an (unweighted) edge e = {u,v} is the rank-1 matrix

Le=(1,-1,)® (1, —1,)

where 1, € {0,1}" denotes the indicator vector' for u. Here a ® b denotes the outer
product of two vectors a,b, defined by (z,(a ® b)y) = (a,z)(b,y). Note that the
expression for L, is indifferent to whether we wrote 1, — 1, or 1, — 1,,, as long as it is
symmetric. For any input vector z € RV, we have

(2, Lext) = (x4 — ).

For an undirected graph G = (V| E) with positive edge weights w : E — R.q, the
Laplacian of the graph is the weighted sum of Laplacians of its edges,

L=> w(e)L.

Given an input vector x € RV, we have

(x,Lz) = > wle)(x,Lx) = >,  wle)(z, — ,)°.

eck e=(u,)EE

We are avoiding the conventional notation e, for the standard basis vectors because e is so
frequently used for edges.
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That is, the L induces a simple sum of squared differences on x, based on the edges
of the graph.

In fact, it induces a very familiar sum of squares. Recall that the the electrical
flow problem is to minimize (f, Rf) over f € RF sit. Bf = d. Here R = diag(r)
is the diagonal map of resistances r € RE. d € RV represents the flow demands
and B : RF — RY maps flows to the net flow at each vertex. We also saw that, by
first-order optimality conditions, the electrical flow is always of the form f = R~'BTp
for a set of vertex potentials p. Then we have
GRS = (ROBTD RRTBTD) = 5 (- )

e=(u,v)€E Te

That is, we are choosing p as to minimize the Laplacian of the graph with edge weights
w(e) = 1/r.

The Laplacian L is also closely tied to the cuts of G. Given a set S C V, if we
letting 15 and 1g denote the indicator vectors of S and S, we have

(1s, L1g) = 4w(4(S5)).

Recall that a linear operator A : R — R" is symmetric if A = AT. It is easy
to see that the Laplacian L is symmetric: each L. is symmetric since in general
(a®b)" = (b®a), and L is a positively weighted combination of L,’s. Another salient
property of L is that, as a sum of squares,

(x, Lx) >0 for all z € R".

These two properties make L a member of the following very importance class of
linear operators.

Definition 21.1. A linear operator A : R™ — R™ is a positive semi-definite linear
operator if

(a) A is symmetric.
(b) (x,Azx) >0 for all z € R".

A is (strictly) positive definite if in addition to being positive semi-definite,
(c) A is invertible.

The Laplacian L is not invertible: L1 = 0. If G is connected, and we restrict
to the n — 1 space RV /1, then L is invertible and (strictly) positive definite (see
exercise 21.3).
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21.2 The Spectral Theorem for Symmetric Maps

Our first discussion on random walks (Chapter 19) showed that eigenvectors give
insight into the behavior of a linear map. We will see that the eigenvectors of
symmetric linear maps — such as the Laplacian — are particularly well-behaved and
useful.

Let A :R"™ — R™ be a linear map. Recall that a vector x € R" is an eigenvector
of A with eigenvalue p; € C of Az = pyx. Recall the following facts, which apply
generally to all linear maps.

Fact 21.2. Let A: R™ — R" be a linear map. Then A has an eigenvalue iy € C and
eitgenvector x € C".

If A is symmetric, then we can strengthen this fact to assert a real-valued eigenvalue
and eigenvector with real-valued coordinates, and moreover they can be obtained by
optimization.

Lemma 21.3. Let L : X — X be a symmetric linear map in a vector space X over
R. Let x maximize (x, Lz) subject to ||x| = 1. Then Lz = pyx for py = (x, Lx).

Proof. We claim that for any v € X with |lu]| =1 and (u,z) =0, (u, Lx) = 0. If Lz

is orthogonal to u for every u orthogonal to x, then we must have Lx € span(x); i.e.,

Lz = pyx for some py € R. Upon inspection, py = py (z, ) = (x, Lx), as claimed.
Let v € X with ||Jul]| =1 and (u,z) = 0. Define

[ r+teu T+ eu _ (w +eu, L(x + eu))
f(e)_<\/1+62’L<\/1+62>>_ 1_|_€2 :

f(€) can be interpreted as perturbing x slightly in the direction of u and renormalizing,
. . 2 2 2 2
and then computing the inner product over L. Note that ||z + eu||” = ||z||"+€*||ul|” =
1+¢€2, s0 % is indeed a normal vector that competes with @ in maximizing (z, Lx).
In particular, by choice of z, f(e) is maximized at f(0) = (z, Lz). Optimality at 0
implies that f’(0) = 0. Expanding out f’(0), we find that (u, Lz) = 0, as desired.
(See exercise 21.4). O

Remark 21.4. An alternative proof starts from the fact there exists a complex eigenvalue
and eigenvector, and goes on to show that this eigenvalue must be real-valued and
that there is a corresponding eigenvector with real-valued coordinates.

The following theorem, called the spectral theorem for symmetric operators,
strengthens the previous lemma to show that all the eigenvalues and eigenvectors are
real-valued.
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Theorem 21.5. Let X be an n-dimensional vector space over R. Let A: X — X be

a symmetric linear map. Then there exists an orthonormal basis vy, ...,v, of X and
n scalar values Ay, ..., N\, € R such that
A:)\1(1)1®U1)—|—/\2(’U2®U2)—|—"'+)\n(’0n®vn). (211)

Proof. It n = 0, then the claim is tautological, as X is the trivial vector space {0}
and A can be expressed as an empty sum. Suppose n > 1. By Lemma 21.3, A has a
real-valued eigenvalue p; with a corresponding eigenvector v € X. By scaling u, we
may assume ||u|| = 1. Consider the map B = A — p;(u ® u). B is also symmetric,
and maps the space span(z) = {ax: o € R} to 0. Let Y = {y € X : (z,y) = 0} be
the subspace of X orthogonal to z. We have dim(Y) =n — 1.

We claim that B maps Y into Y. Indeed, for any y € Y, we have

(z, By) = (Bx,y) = (0,y) =0,

so ByeY.

Thus B restricts to a linear and symmetric operator on Y. By induction on n,
there is an orthonormal basis vy,...,v,_1 of Y and scalar values \;,...,\,_1 € R
such that

B=Mwi®@uv))+ 4+ A_1(vp_1 @ Up_1).
Let A\, = 1 and v, = u. Observe that vy,...,v, is an orthonormal basis of X. We
have
M1 @vp) 4+ -+ A(v, @ up) = B+ A\y(vp, @up,) = A,
as desired. [

Theorem 21.5 makes the structure of any symmetric map A : R” — R™ extremely
transparent. By Theorem 21.5, let vy,...,v, € R* and pq, ..., u, € R be such that

A=p(vr ®@v) + -+ pn(vy @ vy).

We assume that the p;’s are in nonincreasing order: gy > pio > -+ > p,.”
For any input vector z € R™, we can write 2 uniquely in the basis {vy,...,v,} as

T = 0qUp + - QpUp,

2Notationally, we try to use p;’s when listing the eigenvalues in decreasing order, and \;’s when
listing the eigenvalues in increasing order.
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where a; = (x,v;). Then we have
Ax = poavy + -+ + vy,

That is, in the basis {vy,...,v,}, A simply rescales the ith coordinate by a factor of
;. That is to say:

Every symmetric matriz is a diagonal matriz up to rotation (i.e., change in basis).

We can see from the construction in the proof that the p;’s are the eigenvalues of
A and the v;’s are eigenvectors. But this fact is even more obvious in hindsight given
the spectral representation (21.1). For each i, we have

Av; = pi(v; ® vy)v; = vy,

by orthonormality of the v;’s. The following theorem gives a min-max characterization
of the eigenvalues and follows immediately from the spectral theorem. It is often
called the Courant-Fischer minimaz theorem.

Theorem 21.6. Let A : R™ — R"™ be a symmetric linear operator. Let iy, ..., i, be
the n eigenvalues of A (with multiplicity) in decreasing order. Then
(z,Lx)
L = max

min .
S:dim(S)=k-12€X/S (x,x)

21.3 Random walks in undirected graphs

Let G = (V, E) be an undirected graph with m edges and n vertices, and positive edge
weights w : E — Rsg. Let us assume that G is connected. Let R : RV — RY be the
random walk map of G. Recall that R = AD™!, where A : RV — RV is the weighted
adjacency map and D = diag(d) is the diagonal map of weighted vertex degrees
d = Al. Recall that R can be analyzed by the Perron-Frobenius theorem, which for
random walks gave us a lot of information about the eigenvalues and eigenvectors
of R. In particular, all of the eigenvalues of R lie in the range [—1,1], and it has
eigenvalue 1 with multiplicity 1. There is a strictly positive eigenvector for eigenvalue
1 that defines a unique stationary distribution. Before, we proved the existence of
a unique stationary distribution for strongly connected directed random walk. For
undirected random walk, the stationary distribution is very straightforward.

Theorem 21.7. Let G = (V, E) be an undirected graph with m edges and n vertices,
and positive edge weights w : E — Rsg. Let R : RV — RV be the random walk map of
G. Then the stationary distribution of R is proportional to the weighted degrees of its
vertices.
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Proof. We already know that the stationary distribution exists and is unique. We
have

R(A1) = A(diag(A1)) "' A1 = A1
0

While R is not a symmetric map?, we can extend the spectral theorem for symmetric
maps to R by way of similarity.

Definition 21.8. Two linear maps A, B : X — X are similar if A = C~'BC for an
invertible map C': X — X.

Lemma 21.9. Let A and B be similar. Then their kernels are isomorphic. In
particular, if A= C 'BC, then C restricts to an isomorphism between ker(A) and
ker(B).

Lemma 21.10. Let A, B : X — X be two linear maps. If A and B are similar, then
A and B have the same eigenvalues with the same multiplicities. If A= C~1BC, then
C maps eigenvectors of A to eigenvectors of B with the same eigenvalues.

Proof. For all A\, A— A\I and B — AI are also similar. m

We introduce the normalized walk matriz as the map @ : RY — RY defined by
Q _ Dfl/ZRDl/Q _ D71/2AD71/2.

By the first equality above, @) is similar to R, and thus has all its eigenvalues in the
range [—1, 1] and eigenvalue 1 with multiplicity 1. On the other hand, by the second
equality, () s symmetric. As such, it has an orthonormal basis of eigenvectors. Let
1 =p1,..., u, > —1 list the eigenvalues of () in decreasing order. Let uq,...,u, be
an orthonormal basis of RV such that

Q =11 @uy + pa(us @ ug) + -+ + fin(Un @ Uy,).

(Here we substituted p; = 1). We also know, from Lemma 21.10, that D'/?u; must
correspond to the uniform distribution, d/(1,d). Since u; has unit length, we have

D=Y2(d) 1
w = - L
YDA T Vew

3unless G is regular; see exercise 21.5
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where v/d represents the entrywise square root of d, and W = ¥ ,c p w(e) = 23 wev d(v)
is the sum of all edge weights. Substituting back in, we have

Q= ziv(\/?i@@\/a) +piz(uz @ ug) + - i (Un @ ).

Let us now consider the convergence rate of a random walk. Let x € AV be any
initial probability distribution over (). We want to understand the distribution R*x
obtained after k steps of the random walk. Observe first that

ka (a) D1/2QkD_1/2x

. k
_ D2 <2W <\/E® \/E) F o (ts @ uz) + -+ i (un @ un) ) DY

1
o pl/2 (QI/V (\/E® \/c_l) + Mg(UQ ® ug) + -+ + /’Lﬁ(un ® Un))D_l/Q:L‘

o d
2 o+ (e @ wa) 4 (@ ) D7
(a) substitutes in R = DY2QD~/2 where the D~/ and D'/? terms between Q’s
cancel out. (b) is because the u;’s are othonormal® — here we see some of the power of
the spectral theorem! (c) is because

D' (Vd@Vd)D™r = (d@ 1)x = (1,2)d = d.

Consider the RHS of the last equation above. Remarkably, the stationary distri-
bution, d/2W, has emerged, followed by a messy term involving the non-dominant
cigenvalues and eigenvectors. Thus the difference between R¥z and the stationary
distribution is precisely

DY/? (ug(uZ @ ug) + -+ 4 pl(uy ® un))D’l/Qx.

Let S = pb(ug ® ug)+- - -+ pk (u, @ uy,); S is symmetric, with eigenvalues 0, u%, . .., uk.

4We should point out that (a ® b)(c @ d) = (b, c)(a @ d)
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Let A,.x be the maximum degree in G and let A,;, be the minimum degree.

|ia = i = s
= <SD‘1/2x, D(SD—l/Qx)>
< N[ SD 21
= Amax<D’1/2x, 5?2 (D’l/zx»
2 max{,ugk, ,uik}A<x, D_1m>
Amax
Amin ‘

< max{ 3", 2"}

(d) and (e) both follow from the fact that for a symmetric map A with maximum
eigenvalue iy, we have (z, Az) < py||z||* for all # (Lemma 21.3). D has maximum

eigenvalue Ay, S? has maximimum eigenvalue max{ usk, uik}, and D~! has maxi-
mum eigenvalue 1/A ;.. Recall that ug, p, € [—1,1). If ps and p,, are both bounded

away from both 1 and —1, then max{u%k, uik} = max{ s, || }?* — 0 as k — co. To
this end, the spectral gap of a random walk R is defined as the difference

v =1 —max{py, |1},

where 15 is the second largest eigenvalue and i, is the smallest eigenvalue. We have
given the following bound on the convergence rate as a function of the spectral gaph.

Theorem 21.11. Let G = (V, E) be an undirected graph with m edges and n vertices,
and positive edge weights w : . — Rsg. Let G be connected. Let d € R‘>/0 be the
weighted degrees of the vertices. Let Ap.x = max, d(v) be the maximum weighted
degree and let Ay, = min, d(v) be the minimum weighted degree. Let W = cpw(e)
be the sum of edge weights. Let R : RV — RV be the random walk map of G and let ~y
be the spectral gap of R.

For any initial distribution x € AV, x converges to the stationary distribution,

s =d/2W, at a rate of
[ — o] < (1= )"y B/ B

21.4 Additional notes and materials

Spring 2024 lecture notes. Click on the links below for the following files:
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e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
e Handwritten notes annotated during the presentation.
e Recorded video lecture.

21.5 Exercises

Exercise 21.1. Let A € R™™. Prove or disprove: A is symmetric iff (x, Az) =
<x, AT:U> for all .

Exercise 21.2. Let A € R™"™ be positive semi-definite. Prove or disprove: A is
positive definite iff (x, Ax) > 0 for all x # 0.

Exercise 21.3. Let G = (V, E)) be an undirected graph with m edges and n vertices,
and positive edge weights w : £ — Rso. Let L : R¥Y — RY be the Laplacian of G.
Prove that G is connected iff for any = ¢ span(1), we have (x, Lz) > 0.

Exercise 21.4. Finish the proof of Lemma 21.3, by deriving the derivative f’(¢) and
showing that f’(0) = 0 implies that (z, Lu) = 0. Where do we use the assumption
that L is symmetric?

Exercise 21.5. Let G = (V, E') be an undirected graph with m edges and n vertices,
and positive edge weights w : £ — Rsg. Let R : RY — RY be the random walk map.
Prove that R is symmetric iff G is regular®.

Exercise 21.6. Let K,, = (V,E) denote the unweighted complete graph over n
vertices, and let R € RV*Y denote the random walk matrix for K,. Calculate all the
eigenvalues (along with their multiplicities) of R and calculate the spectral gap. Show
your work and explain your reasoning.

Exercise 21.7. Suppose your goal is to start at a random walk at a single vertex and
converge to the stationary distribution as fast as possible. Show that one can choose
a vertex v such that, starting from an initial distribution of x = 1,,, the f>-distance

from the stationary distribution after k steps is at most (1 — )"

A graph is regular if every vertex has the same weighted degree
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Exercise 21.8. Let G = (V, E') be an undirected graph with m edges and n vertices,
and positive edge weights w : £ — Rso. Let L : RY — RY be the Laplacian of G.
Suppose the spectral gap v is at least some constant, say v = 1/2. (Such a graph is
called an expander).

1. Show that the diameter of G is at most O(logn).

2. Recall the (s,t)-connectivity problem for which we showed that a random
walk gives a O(log n)-space algorithm. Suppose also that G is has constant
maximum degree (say, maximum degree 42). Give a deterministic, polynomial
time, O(log n)-space algorithm for (s, t)-connectivity on G.
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Chapter 22

Conductance

22.1 Introduction

Recall our randomized construction of a constant degree expander, as the union of a
constant number of uniformly random matchings. With high probability this produces
an expander. But given such a randomized graph, how can we verify and know for
certain that it has constant expansion? We can obtain a O(log n)-approximation by
sparsest cut, but this approximation bound is too rough to decide if the expansion is
closer to 1 or 1/log(n).

We will present an algorithm that can certify a constant degree expander. The
algorithm is really an approximation algorithm for the conductance of a graph, a
different but related notion to sparsity that coincides with sparsity for constant degree
graphs. The approximation bound we get will be somewhat unusual but it will suffice
for constant expansion.

Just as important is how we approximate the conductance. We model the input
graph as a symmetric matrix called the “Laplacian”, and study its eigenvalues. There
turns out to be a strong relation between the second smallest eigenvalue and the
conductance via what is called “Cheeger’s inequality”. The Laplacian has many other
applications and we will discuss more in later chapters. The general study of graphs
via their Laplacian’s is called spectral graph theory and this approach has yielded
many exciting algorithms.

22.2 Sparse cuts
Recall that the sparsity of a cut 6(S5) (where S C V), denoted ®(S), is the ratio

w(9(5))

p(5) % POE)
()= (ST, ST
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where S = V'\ S is the complement and w(5(S)) = Dees(s) w(e) is the weight of the
cut. The sparsity of the graph G is define as the sparsity of its sparsest cut,
def .
O(G) = min O(9).
To relate sparsity to the Laplacian, note that for any nonempty set S C V with at
most n/2 vertices, we have
w(6(S))  (lg, Llg)

(S) = =g =g (22.1)

where 1g is the {0, 1}-indicator vector for S.

Now we make a deeper connection to the eigenvectors of L. As a positive semi-
definite matrix L, L has nonnegative eigenvalues. Moreover, we know that 1 is an
eigenvector with eigenvalue of 0 — this gives us our smallest eigenvalue. The eigenvector
corresponding to the second smallest eigenvalue, denoted \q, is given by

A2 = min <x,Lx>'
z:(1,2)=0 <JI,LE>

Now, consider any cut 1g, and let x be the orthogonal projection from 1; namely,
r =1g —al where a = (15,1)/(1,1) = |S|/n

Observe that
(r,7) = (z,1s) = (1 — )|S] = (n = [S])[S]/n.

Thus

Ny < (x,Lx)  Yeess)w(e)

=G "Blw-lsn <2

Taking the minimum over all sets S, we obtain the following.

Theorem 22.1. Let G = (V, E) be an undirected graph with m edges and n vertices,
and positive edge weights w : E — Rsg. Let L : RY — RY be the Laplacian of G. Let
Ao be the second smallest eigenvalue of L and let ®(G) be the sparsity of G. Then

o < 20(G).
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sparsity sparsity sparsity
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".
\
Low Moderate High
conductance conductance conductance

Figure 22.1: Examples of graphs with varying levels of sparsity and conductance.

22.3 Conductance

We now turn to an alternative to sparsity called the conductance. For a set of vertices
S, the volume of S, denoted vol(.S), is the sum of degrees of vertices in S:

vol(S) = > deg(v).

ves

The conductance of a set S, denoted W(.S), is defined as

- w(0(5))
v(s) = min{vol(S),VOI(g)}

Note that ¥(.S) is always positive (for a connected graph) and at most 1. There is
a clear resemblance between conductance and sparsity except here the vertices in
the denominator are weighted by their degree. Similary to sparsity, we define the
conductance of a graph as the minimum conductance of any cut:

U(G) = @&1&/‘1/(5).

Like sparsity, conductance is also useful for divide and conquer. The sparsest cut is
more suited for divide and conquer on vertices, while conductance, where vertices are
weighted by their degree, is more conducive to divide and conquer on edges. Recall
that sparsity was naturally motivated by its connection to multicommodity flow. On
the other hand, conductance is strongly connected to random walks. Indeed, for
any set S, the stationary distribution is in S with probability proportional to vol(.S).
Moreover, the conductance of a (small) set S is the amount of probability mass that
enters and leaves S in each step at the stationary distribution. Figure 22.1 gives some
examples of graphs with different levels of sparsity and conductance.

290



22. Conductance Kent Quanrud
22.8. Conductance Fall 2025

We would like to express conductance in algebraic terms, similar to sparsity in
(22.1). While the numerator in (22.1) seems appropriate, the denominator does not
capture the volume. Instead, consider the following quotient:

(x, Lx)
(x, Dx)

where z € RV. (22.2)

For any set S with at most half the total volume, we have

~w(d(S))  (1s,Lls)
w(9) = vol(S) <15,D1§>'

That said, the quotient (22.2) does not have a direct connection to the Laplacian L in

the same way as sparsity did. However, it is connected to the normalized Laplacian,
which is the map M : RV — R defined by

M X p-12pp-1/2,

For any vector z, letting y = D'/?z, we have

(z,Lz) (y, My)

(z,Dz) — (y,y)

Since the normalized Laplacian M is also symmetric, the RHS models the eigenvalues
of M. In today’s discussion, we will study the eigenvalues of M and relate it to the
condutance of the graph.

We first point out that there are some similarities (in the linear-algebraic sense) to
other matrices that we have studied. Let R = AD~!: RY — RY denote the random
walk map. We define the normalized random walk matriz () as

Q d:ef D—I/QRDI/Q — D_1/2AD_1/2.
To draw the connection to M, if we expand L = D — A, then we have
M=DY*(D—-A)DY?=1—-Q=D*I—-R)DY%

Theorem 22.2. Let G = (V, E) be an undirected graph with m edges and n vertices,
and positive edge weights w : E — Rsg. Let M : RV — RY be the normalized
Laplacian and R : RV — RY the random walk matriz. Then M is similar to I — R,
and (equivalently) I — M is similar to R.

Recall that similarity preserves eigenvalues. Since R has its eigenvalues in [—1, 1]
and 1 with multiplicity 1, M has its eigenvalues in [0,2] and eigenvalue 0 with
multiplicity 1. M has eigenvalue 2 iff R has eigenvalue —1.
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Cheeger’s inequality. We now relate the eigenvalues of M to the conductance of
G. The following inequality is called Cheeger’s inequality due to an analogous bound
by Jeff Cheeger for continuous manifolds.

Theorem 22.3. Let M be the normalized Laplacian of an undirected graph G, and
let Ny be the second smallest eigenvalue of M. Then

A
52 < U(G) < \/2X,.

The presence of the /--- on the RHS is unusual for us, who are more used
to multiplicative approximations. (Indeed, the square-root leads to a lot of tricky
situations, such as the small set expansion hypothesis.)

That said, consider constant degree expanders. In constant degree expanders, the
conductance equals the sparsity up to a constant, and where we are interested in
sparsity /conductance greater than some constant. Up to now, we did not have an
algorithm to verify if a constant degree graph is expander. In this regime, Cheeger’s
inequality implies that the expansion and )y are within a constant. An algorithmic
proof of Theorem 22.3 will give the verification algorithm we seek.

We note that the LHS, \y < 2U((G), is more straightforward than the RHS, and
left to the reader in exercise 22.1. The harder inequality, ¥(G) < /2),, is proven
momentarily in Section 22.4.

Implications for mixing time. Cheeger’s inequality allows us to connect the
mixing time of a random walk on G to the conductance of G. At a high level, we
have established connections between:

o The conductance of G and the second smallest eigenvalue of M.

e The second smallest eigenvalue of M and the second largest eigenvalue of the
random walk.

e The second largest eigenvalue of the random walk and the convergence rate to
the stationary distribution.

The third connection is a little flimsy, however, because the convergence rate of a
random walk on G is determined by the second largest absolute value of the eigenvalues
of the random work. This can be the smallest (most negative) eigenvalue of the random
walk matrix when if it is very close to —1. So instead we analyze the closely related
lazy random walk where this exception does not occur.
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Theorem 22.4. Let G be an undirected graph with conductance V and lazy random
walk matriz S. Then the lazy random walk has spectral gap vs > V?/4, and therefore
converges to the stationary distribution at a rate of

Amax

|$' = 5| < exp(-rw?/a)y 2

for any initial distribution x.

Proof. Let S denote the lazy random walk matrix. We have S = I/2 + R/2, hence
wr(S) = 1/2 4 up(R)/2 for all k.' In particular, since p,,(S) > —1/2, S has spectral
gap

: r .
vs = min{l — po(S), 1+ pn(S)} > §m1n{1 — ua(R), 1}.
Furthermore, by similarity of I — R and M, followed by Cheeger’s inequality, we have
1= pio(R) = Mo(I = R) = Mo(M) > ¥?/2,

hence vg > min{W¥?/2,1}/2 = U2 /4, as desired. O

22.4 Proving ¥(G) < /2,

In this section we present a proof of the upper bound, ¥(G) < /2, based on the
proof in [Chu97]. The proof also entails an algorithm due to [Fie73] producing a cut
with conductance at most v/2\,. Besides the surprising connection to the eigenvalues
of M, the algorithm is simple and practical. Based on previous discussions, the reader
might be able to guess it.
Recall that
{y, My)

. ) (x, Lx)
)\2 = min = min .
y:<\/g’y>:0 <y’ y> z:(d,x)=0 <$, D(L’>

Let z € RV with (d,x) = 0 attain Ay on the RHS. (We note that eigenvectors, hence
x, can be computed.) z is orthogonal to d and, assuming that we have normalized
x such that (z, Dx) = 1, x has a “fractional cut value” of (z, Lz) = A\y. Our goal is
to “round” the “fractional cut” x € RV to a set S without loosing too much on the
conductance. How?

'Here 11 (A) denotes the kth largest eigenvalue of A, and A\i(A) denotes the kth smallest eigenvalue
of A.
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As an additional hint, we point out that a similar setup arose before for minimum
(s,t)-cut and sparsest cut. In each case we had a “fractional cut” from the LP and
wanted to produce a discrete one.

Déja vu! We round z to a cut by outputting the best cut along the line embedding
x! This is called Fiedler’s algorithm and pseudocode is given in Fig. 22.2.

Analysis. We first prove Cheeger’s inequality, and extract the algorithm from the

proof in hindsight. Call a set S C V' small if vol(S) < vol(S). That is, U(S) =
w(6(S))/ vol(S) for small S. The following lemma proves Cheeger’s inequality for the
special case where z is nonnegative with small support.

Lemma 22.5. Let x € R‘Z/0 be nonnegative and S = support(z). If S is small, then

\112
(x, Lx) > 7(3:, Dz).

Proof. Let k = |S|, and enumerate S = {v1,..., v} in decreasing order of z(v;). For
each i, let S; = {vy,...,v;}. All S; are small. We have

U(z, Dx) = 0> 2 (v;) deg(v;) = ¥ 2*(v;)(vol(S;) — vol(S;_1))

i=1 i=1

@y ; Vol(Si)<952(Ui) - ‘TQ(UZ'“))

k—1

S (2 (vi) — 2% (via) )w(5(SH))

i=1

= > w(e)|z?(u) — 2%(v)|

E=Uv

¢ wx,f:w S w(e)(x(u) + 2(v))?

INE

E=Uuv

%) 2(x, Lx)(x, D).
(a) interchanges sums (where we dropped the term for vol(Sy) = 0). (b) is by definition
of U. (c) is by Cauchy-Schwartz. (d) is by the inequality (a + 0)? < 2(a® +0?). O

Recall that the algorithm first computes x such that (z, Lz) = \o(x, Dz). If = was
nonnegative with small support, then applying Lemma 22.5 to x gives Xy > U?/2, as
desired. Of course z is neither nonnegative nor supported by a small set of vertices.
We first address the issue of nonnegativity.
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Fiedler(G = (V,E), w € Rgo)

1. Let z minimize é;éﬁi s.t. (z,d) =0 and = # 0.

2. Number the vertices vy, ..., v, in order of x(v;). S; = {v1,...,v;} for all i. Return the set
S; of minimum conductance.

Figure 22.2: Fiedler’s algorithm for low-conductance cuts.

Lemma 22.6. Let v € RV, and split v = v, —x_ where x, ,x_ € RY are nonnegative
vectors whose nonzeroes are the positive and the (absolute values of the) negative
coordinates of x, respectively. Then (x, Lx) > (ry, Lxy) + (x_, Lz_) and (z, Dx) <
(xy,Dxy)y+ (x_, Dx_).

Proof. For the first inequality, we have

(.La) = Y wle)(@(u) - z(v))’

e={u,v}
= _; }w(e)(fm(u) — 24 (v) = (2 (u) = 2_(v)))*
= (zy, Lay) + (e La_) =2 30 w(e)(ws(u) — 24 (v))(2-(u) — 2_(v))

e={u,v}

> (xy, Lrey) + (v, Lx_).

For the last inequality, observe that (a; — b4 )(a— — b_) < 0 for any real numbers a
and b.2 The second inequality is simpler and the proof is left to the reader. O

Now we can split  into two nonnegative vectors xz, and x_. However z and x_
may not have small support. This is addressed by the following lemma that allows us
to translate x before splitting into the positive and negative parts.

Lemma 22.7. Let (x,d) = 0. For all « € R,

(x 4+ al, Lz + al) - (x, Lx)
(x +al,Dx+al) = (z,Dz)

Proof. We have (z, Lz) = (x + al, L(xz + al)) because 1 € ker(L). Meanwhile, con-
sider the function

f(a) = (x+al,D(z+al)) € (z, Dz) + o*(d, 1),

where for (a) we recall that (d,z) = 0. Of course the RHS is minimized at « = 0. [J

*WLOG a >b. Thenay —by >0and a_ —b_ <0.

295



22. Conductance Kent Quanrud
22.5. Additional notes and materials Fall 2025

To complete the proof, let z € R with (z,d) = 0 and (x, Lx) = A\y{x, Dz). Then
2 \112

(x,Lz) > (ry, Lxy) + (x_, Lx_) > q;(<m+,D:13+> +{x_,Dzx_)) > 7(x,Dx>.

Rearranging gives

_ (w, Lz)
(x, Dx)

\1,2
> )
-2

as desired.

Making the proof algorithmic. Let o denote the minimum conductance of all the
cuts considered by the algorithm. We can easily adjust the key lemma, Lemma 22.5,
to incorporate «, as follows.

Lemma 22.8. Let x € R‘z/o be nonnegative with small support S = support(z). Let
V1, ..., v, number S in nonincreasing order of x(v;), and let S; = {wvy,...,v;} for all
i. If all S; have conductance at least o, then (x, Lx) > o*(x, Dx)/2.

Repeating the same proof as before, except with Lemma 22.8 in place of
Lemma 22.5, gives Ay > a?/2, hence a < /2.

22.5 Additional notes and materials

We refer the reader to [Trel6; Spil9] for more on spectral graph theory.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

22.6 Exercises

Exercise 22.1. Here we prove the lower bound in Cheeger’s inequality (Theorem 22.3),
U(G) > Ag/2. Let S C V induced the minimum conductance cut; i.e., vol(S) <
vol(V)/2 and ¥(G) = W¥(S). Consider the vector + = D¥?1g and let y = D*/?15.

296


https://ras24.s3.us-west-1.amazonaws.com/RAF24.22+-+Conductance.pdf
https://ras24.s3.us-west-1.amazonaws.com/RAF24.22p+-+Conductance.pdf
https://youtu.be/XXojsGUmBFs
https://raf22.s3.amazonaws.com/RAF22.20+-+Conductance.pdf
https://raf22.s3.amazonaws.com/RAF22.20p+-+Conductance.pdf
https://youtu.be/4tooQOUkgSE

22. Conductance Kent Quanrud

22.6. Ezercises Fall 2025
1. Show that
B S B
2. Show that for any «a, 5 # 0, we have
(az + By, Mo + BY)) _ gy, oy,

(ax + By, ax + By)

3. Argue that one can choose a, § # 0 such that <\/E, ax + 6y> =0.

4. Finally, prove that the second smallest eigenvector of M is at most 2U(G).
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Chapter 23

Deterministic log-space connectivity

23.1 Introduction

Consider the (s, t)-connectivity problems in undirected graphs. Let G = (V, E) be
an undirected graph with m edges and n vertices. Let s,t € V. We want to know if
s and t are connected in G. This is very easy in normal settings, but in logarithmic
space, we cannot mark the vertices as we visit them. Previously we solved this with
random walks. The algorithm takes a random walk from s and answers yes if we
reach ¢ within the first O(mn) steps. The algorithm was justified by analyzing the
cover time: we showed that a random walk from s visits every vertex (connected to
s) in < 2mn steps in expectation. A follow up exercise showed that if s and ¢ are
connected by a path of k edges, then the expected number of steps is O(mk).

We also know that random walks have stationary distributions, which arise as
the unique eigenvector of eigenvalue 1 of the random walk map R : RY — RY. For
undirected graphs, the convergence rate is connected to the spectral gap v of the
random walk matrix. The spectral gap ~ is the difference between the maximum
eigenvalue 1 and the absolute value of any other eigenvalue of the random walk matrix.

Let d € NV be the degrees of G, and recall that the stationary distribution (for
undirected graphs) is proportional to d/2m. Let x, € A" denote the distribution
after k random steps (from some arbitrary initial distribution zo € AY). Then
converged to the stationary distribution s at a rate of

lzx — d/2ml|, < (1= 7)"V/n.

An undirected graph is called an expander graph if the spectral gap v is at least
a constant. Suppose G is an expander with spectral gap (say) 1/2. Then a random
walk converges exponentially fast at a rate of

e — d/2mll, < 27 .
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For k = O(log n) steps, we have
n
e — df2mll, <z - d/2m], < 2o

Since d(v)/2m > 1/2m for all v, we have zy(v) > 0 for £ > O(log n).

This holds for any initial distribution, so suppose we started a single vertex s.
Then x(v) > 0 implies that there exists a path form s to v of length k. That is, any
graph with constant spectral gap has O(log n) diameter.

Now suppose that G also had maximum degree at most (say) 8. A random walk
on G only needs to sample O(1) random bits to sample each random step. If there is
a path from s to t of length O(logn), then there is some sample of O(log n) random
bits that generates a random walk from s to £. The number of random bits is so little
that we can deterministically enumerate and try all 2°0°€™) = poly(n) possible bit
strings!

Observation 23.1. (s,t)-connectivity in a constant degree expander can be decided
deterministically in poly(n) time and O(logn) space.

Our goal is to generalize this argument from expanders to general graphs. We will
prove the following theorem due to Reingold [Rei08].

Theorem 23.2 ([Rei08]). There is a O(logn) space, polynomial time deterministic
algorithm for (s,t)-connectivity in undirected graphs with n vertices.

23.2 An overview of the deterministic connectivity algorithm

We first give a high level of the algorithm and analysis of Theorem 23.2. We will
introduce some important technical lemmas, and show how to complete the proof
of Theorem 23.2 assuming they hold true. We will prove the lemmas in subsequent
sections.

The approach taken by [Rei08] starts from Observation 23.1, that deterministic
log-space connectivity is easy on expander graphs. The high-level idea is to implicitly
convert the input graph G into a constant degree expander. [Rei08], building on
previous work [RVWO0O0], applies a sequence of graph transformations to G that
iteratively improves the spectral gap. These transformations are done implicitly
because in O(logn) space we cannot explicitly rebuild the graph. One can then
derandomize the random walk algorithm by enumeration on this artificial expander
graph.

We assume the graph G is a regular graph where all vertices have degree d. It
is not difficult to take the input graph and transform it into a regular graph; we
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leave this as an exercise to the reader. The graph transformations introduced below

preserve the regularity of the graph (though d changes). For the rest of this section,

we always let G denote an a regular undirected graph with n vertices and degree d.
We now introduce the two graph transformations that we will use.

Graph transformation 1: Powering.

G G? G?

For k € N, the kth power of G, denoted G*, is the multi-graph on V with edges
corresponding to all the k-step walks for G. That is, for u,v € V, the edge (u,v) has
multiplicity equal to the number of walks from u to v.

If G has random walk matrix R, then G* has random walk matrix R*, and the
cigenvalues of RF raise the eigenvalues of R to the kth power. This improves the
spectral gap which is good. Unfortunately powering also increases the maximum
degree.

Lemma 23.3. G* is a reqular undirected graph on V with degree d* and random walk
map R*. If R has spectral gap ~y, then R* has spectral gap 1 — (1 — 7)k.

The proof is left to the reader.

Graph transformation 2: the zig-zag product. The second operation operation
is called the zig-zag product. The goal of the zig-zag product is to reduce the degree d.
The construction is much more subtle than graph powering.

Let H = (Vy, Ey) be a constant degree expander with d vertices and degree dj.
The number of vertices in H is chosen to match the degree of G exactly. We identify
the vertice of H with the set of indices [d] = {1,...,d}.

The problem with G is that a random step takes log(d) bits, and log(d) is too large.
We use H as a gadget to reduce this complexity. Since H is an expander, it rapidly
approaches the stationary distribution, and the destination of single random step a
uniform distribution over V' = [d]. A random step in H takes only log(dy) = O(1)
random bits. This vertex in H maps back to a choice of neighbor in G.

Thus we use H to simulate the choices of a random walk in G. We maintain one
vertex vy in H and one vertex vg in G. Rather than taking a random step in G
(which requires log(d) bits), we take a random step on H (which requires only log(do)
bits). The new index of vy in H maps to a neighbor of vg in G, and we move from
Ve to this neighbor.
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Intuitively, if H is an expander, then the random step in H should behave similarly
to sampling a uniformly random vertex in H. In that case the choice of neighbor in
G behaves similarly to a uniformly random choice of neighbor, and overall, vg follows
a path similar to a random walk. Meanwhile we only need log(dy) bits to implement
this “pseudo-random” step.

Now the action just described is not symmetric. More precisely, the arcs these
steps describe on the product set V; x V5 do not given an undirected graph. To ensure
we have an undirected graph we will have to append a few additional steps.

We are now prepared to define the zig-zag product formally. The zig-zag product,
denoted Z(G | H), is a regular graph with vertex set V; x V4 and degree d2. Each edge in
Z(G | H) consists of a step in H (with dj degrees of freedom), a predetermined “zig-zag’
step (with 0 degrees of freedom), followed by a step in H (with dy degrees of freedom).
To define this formally, let (vy,i;) € Vi x V4 be a vertex. For (kq, ko) € [do] X [do], the
(k1, k2)th neighbor of (vy,4;) is the point (vg,i4) obtained by the following steps.

v a v U c v )
<.1> @ <1> b <2> > <2> W <2>
(41 12 12 13 (2

e (a)is astep in H from 4y to its kith neighbor, is.
o (b) moves v; to the isth outgoing neighbor of vy, vs.
e (c) moves from iy to i3 where vy is the igth neighbor of vs.

o (d) moves i3 to its kath neighbor in H.

The most important steps are the first two. This is where a random step in H induces
a step in G. The remaining two steps makes the process reversible and the resulting
graph an undirected graph. (Veryfing this is left to the reader.)

Consider an edge starting from (vy,4;) and ending at (ve,i4). v; and vy are
neighbors in G. However, i; and i4 are not (necessarily) neighbors! The discontinuity
arises in the third step, where the relationship between v; and vy in G is used to
“teleport” iy to i3. Luckily, all we will really care about is preserving the connectivity
in G. If s,t € V are connected in G, then for each index i € [d], there is an index
J € [d] such that (s,i) and (t,j) are connected. Conversely, if (s,7) and (¢,7) are
connected in Z(G | H), then s and t are connected in G.

Analyzing the zig-zag product is the most involved part of the overall proof. We
summarize its properties in the following lemma and defer the proof to later.

)

where:

Lemma 23.4. Let G = (V, E) be a regular undirected graph with n vertices and
degree d, with spectral gap vo. Let H be a regular undirected graph with d vertices
and degree dy. Then Z(G | H) is a reqular undirected graph with nd vertices, degree
d? and spectral gap vav%.
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Combing powering with the zig-zag product. When we combine the zig-zag
product with powering we get the following. For technical reasons it is convenient to
assume G is regular with degree d? for some integer d.

Lemma 23.5. Let G be a reqular undirected graph with n vertices, degree d?, and
spectral gap vya. Let H be a reqular undirected graph with d* vertices, degree d, and
spectral gap vgr. Then Z(G?| H) is a reqular undirected graph with d*n vertices, degree

d?, and spectral gap (1 —(1- 7@)2)’712{-

For (s,t)-connectivity, with some preprocessing, we can assume that G is a regular
graph on n vertices with constant degree d* and spectral gap > 1/ poly(n). We can
also assume that there exists a regular expander H on d* vertices, degree d, and
spectral gap > 3/4. If 45 < 1/16, then by Lemma 23.5 Z(G? | H) has spectral gap

> 1.017¢.

That is, we increase the spectral gap by a constant factor! By repeating the construc-
tion O(logn) times, the final graph has constant expansion! The degree, meanwhile,
is still d?> — the same as before, and a constant.

We need to check that the number of vertices did not blow up too much. Each
time we apply Lemma 23.5, the number of vertices increases by a constant factor
d*. Therefore, after O(logn) iterations the number of vertices increases by a poly(n)-
factor. Altogether we have a constant degree graph with poly(n) vertices and constant
spectral-gap — primed for derandomizing the random walk approach.

To keep the space at O(log n) we do not explicitly construct the generated expander.
Instead we will simulate walks on the expander implicitly.

All that said, we still need to verify that we can run simulate a random walk on
the generated expander in O(logn) space. Let G denote the input graph (with n
vertices and constant degree d?) and let Gy, = Z(Gifl ‘ H ) be the graph obtained
after the kth iteration of Lemma 23.5. To simulate a random walk on one of these
generated graphs, we need to be able to answer the following ¢th-neighbor query. This
query takes as input a vertex v and an index 7, and returns the ith neighbor of v. We
need to show how to implement each query with small space.

We claim the following for each index j.

1. The space required to execute an tth-neighbor query on G? is O(1) plus the space
required to simulate a step on G.

2. The space required to execute an tth-neighbor query on Z(G; ‘ H) is O(1) plus
the space required to simulate a step on sz..
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If the above hold, then the space required to simulate a step on Gy, is O(k), as desired.

Consider the first claim, for G?. We are given a vertex v; in G? and two indices
i1,i2 € [d*]. We query (v,i;) to take a step in G, which returns a vertex vy in Gj.
We then query (v,i2) to take a step in G; which returns a vertex ws. The maximum
amount of space we ever use is O(1) plus the space recursively required to take a step
in Gj.

Consider the second claim, where we are simulating a step on Z(G? ‘ H ) We
are given a vertex (vy,i1), where vy is a vertex in G5 and i, is a vertex in H (and at
most a constant). We are also given two indices ji, jo € [dp] and want to return the
(41, jo)th neighbor of (vy,i;). We first take a step in H from 4; to iy, using O(1) space.
We then query G? for the isth edge from v; to some vy in G?. We then query, for
each i3 € [d], the izth edge from v, in sz. until we find that vy is the izth edge from
v9. Each of these queries take O(1) space plus the space from the recursive call to
G?. Finally we use j, to update from i3 to iy in H, in O(1) space. The maximum
amount of space we ever use is O(1) plus the maximum amount of space recursively
used when querying G?.

All put together, for £ = O(log(n)), Gy is a constant degree expander with poly(n)
that preserves connectivity from G. Moreover we can navigate Gy implicitly via
ith-neighbor queries in O(log n) space per query. We derandomize the random walk
algorithm on Gy, which gives a deterministic algorithm for connectivity in G.

Up to proving Lemma 24.8 in the subsequent section, this completes the proof of
Theorem 23.2.

23.3 Preliminaries
We introduce some mathematical background needed to analyze the zig-zag product.

23.3.1 Tensors of linear maps

Recall that R™*™ denotes the space of linear maps from the vector space R™ to the
vector space R™. R™*" itself is a real vector space with inner product given by

<A, B> = Z AijBij = trace(ATB).
1]

Two helpful identities are

(A,c®d) = (c, Ad)
((a®b), (c@d) = (a,c)(b,d)
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for A€ R™*" a,c € R™ and b,d € R", which the reader may verify.
For A € R™™ and B € R™" the outer product (a.k.a the tensor product) of A
and B, denoted A ® B, is the linear map over R™*" defined by

(r,(A@ B)C)y) = (A"x,CBTy), (23.1)
or equivalently,
(A® B)C = ACBT, (23.2)

for C' € R™*™. We leave it to the reader to verify that this defines a linear map over
R™*™. We have the identities

(A® B)(c®d) = Ac ® Bd, (23.3)
(A® (B+C))=(A® B)+ (B® (), (23.4)
(A® B)T = (A"® BT) (23.5)

which are also left to the reader to verify. The reader may also verify that (23.3)
implies Eqgs. (23.1) and (23.2). The last identify implies that if A and B are symmetric,
then so is A® B.

Lemma 23.6. (A ® B) has eigenvalue-eigenvectors pairs of the form (Aadp,x ®y),
where T is an eigenvector of A with eigenvalue A and y is an eigenvector of B with
etgenvalue Ag.

Proof. For each pair (A4, z) and (Ag,y), we have
(A® B)(zr ®y) = Ax ® By = A ax @ Agy = Aadg(z @ y),

so (z ® y) is an eigenvector of (A ® B) with eigenvalue AgAg. There are m choices
of (A, z) and n choices of (Ag,y) so together this gives mn eigenvalue/vector pairs.
Since (A ® B) acts on an (m x n)-dimensional vector space, these are all the eigen-
value/vector pairs O

Tensor products of random walks. Let Gy = (V4, Ey) and Gy = (V3, E3) be two
undirected graphs with random walk matrices R; and R,. Consider the random walk
on Vj x V5 where given a pair of vertices (v1,v9) € Vi X V;, we take a random step
from v; to wy according to R; and a random step from vy to ws according to Ry. The
distribution of (wy,wy) is described by the m x n matrix

(Rl 11)1) & (R21v2)
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where 1, denotes the {0, 1}-indicator vector for a vertex v. More generally, given a dis-
tribution P € RZ{™ over Vi x V5, taking random steps along 1?; and R, simultaneously
gives the distribution

(R, ® Ry)P = R] PR,.

23.3.2 The operator norm

The operator norm of a linear map A is defined by
[ Al = sup{[|Az| : [lz]| = 1}.

|A]|* is the maximum eigenvalue of the positive semi-definite matrix ATA. For a
symmetric map A, this is the maximum absolute eigenvalue of A.
We have the identities

A+ Bl < Al + 1B, (23.6)
[AB]| < |l BII (23.7)
IA® B < [|AlllB], (23.8)

the proofs of which are left to the reader.

23.4 Analysis of the zig-zag product

Lemma 24.8. Let G = (V, E) be a regular undirected graph with n vertices and
degree d, with spectral gap vo. Let H be a regular undirected graph with d vertices
and degree dy. Then Z(G | H) is a reqular undirected graph with nd vertices, degree
d% and spectral gap vav%.

Let Rz denote the random walk matrix of Z(G?| H). Let Ry be the random walk
matrix of H. We can write a random step in the zig-zag graph as

Rz =(I® Ry)Z(I ® Ry),

where (I ® Ry ) represents the action where we take a single random step in H but
leave the G-coordinate fixed, and Z is the (deterministic) zig-zag step that updates
the G-coordinate and transports the H-coordinate, as described above. Ultimately,
we want to analyze the spectral gap of (I ® Ry)Z(I ® Ry).

To give some intuition, recall that H is an expander. That is, taking a few steps in
Ry is almost as random as sampling a uniformly random vertex from H. To formalize
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this connection, S = (1®1)/d: AV# — AV# be the “random walk” that samples a
vertex from H uniformly at random. Intuitively, Ry &~ S. Suppose we substitute S
for Ry in our expression for the random walk in the zig-zag product, giving,

(I®S)Z(I®8).

This step describes a zig-zag product of G with the graph H’, which is a complete
graph with a self-loop at every vertex. Let us walk through a random step in the
zig-zag product Z(G | H').

1. Starting from (vy,41) € G x [d], we first take a random step in H' from iy to is.
By definition of H', iy € [d] is selected uniformly at random.

2. We then move from v to its isth neighbor v,.
3. Then, we move from iy to i3 where v; is the i3th neighbor of v;.

4. Then we take a step in H' move i3 to a uniformly index iy € [d].

Overall, we move from (vy,41) to (vg,i4) Where vg is a uniformly random neighbor of
vy, and 44 is a uniformly random vertex in H'. That is,

(I®8)ZI®S)=(Rs®S).

This is a much simpler step than the zig-zag product on an arbitrary graph, and can
be analyzed directly. The second coordinate is essentially just uniformly random noise,
and the first coordinate is walking in G. The second coordinate is mathematically
irrelevant and the spectral gap of Z(G | H') is precisely 7¢, the spectral gap of G.

Of course, S is not exactly Ry, and additionally, the zig-zag product of G with
H' does not decrease the degree as we would like. (In fact, it increases the degree.) It
remains to quantify the difference between (I ® Ry)Z (I ® Ry) and (I ® S)Z(I ® S),
which reflects the difference between Ry and S. As we will make more explicit below,
the spectral gap of H, vy, is also a reflection of the difference between Ry and S.
(S has spectral gap 1) This difference between Rj, and S, and the correspondance
between the difference and 7y, is why the spectral gap decreases from g to ya7%-

Previously when analyzing the spectral gap of undirected random walks, we applied
the spectral theorem via similarity to the normalized random walk matrix. But if the
graph is regular, then the random walk matrix is already symmetric, and in fact the
same as the normalized random walk matrix. This applies to G, H, and Z(G | H).

Z(G| H) has stationary distribution (1 ® 1)/d?. Therefore 1 ® 1 is the first
eigenvector of Rz. To bound the spectral gap of Rz, we want to bound

(z, Rz)]
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over all x orthogonal to 1 ® 1.

We can apply the spectral theorem to Ry by similarity to the normalized random
walk matrix. Here, because H is a regular graph, Ry = A/d is already a symmetric
matrix (and coincides with the normalied random walk matrix) and we can apply the
spectral theorem directly. By the spectral theorem for symmetric maps, combined
the the Perron-Frobenius theorem for random walks, we have

RH = U1 ®U1 +)\2(U2®U2) + - —|—>\n(un®un),

where ui,...,u, € R? forms an orthonormal bases and Ay,..., A, € [1 — vg, vy —
1]. Recall that because Ry is regular, the stationary distribution is the uniform
distribution, 1/d. Since Ryl = 1, the first eigenvector u; must be (proportional to)
1. This gives

1
R = 100 1) 4 dufur ©105) 4+ Ml © 0

=S+ Xo(ug ®ug) + -+ + At @ uy).

Let Ry = Ry — yuS; then R); has all its eigenvalues in the range [yy — 1,1 — vy
We factor Rz as

(I ® Ru)Z(I ® Ry) = (I ® (yuS + Ry))Z(I @ (yuS + Ry))
— (I ®S)+ (I @ Ry Z(vu(I © S) + (I @ Ry))
=4I ®8)Z(I®8S) +vu(l®S)Z(I® Ry)
+ (I ® Ry)Z(I® S)+ (I ® Ry)Z(I® Ry).

Let us first analyze the last 3 terms.
Let # € RV*? be any unit vector orthogonal to the uniform distribution. We have

[z, (I ® S)Z(I ® Ry)x)| (I®S8)Z(I® Ry)x||

I
< T2 @ Bl <1 —u.
the third term contributes 1 — vy (times another vy ) and the fourth term contributes

(1—7m)”
For the finale of our analysis, consider the remaining term, (I ® S)Z(I ® S). As
observed earlier, we have

I®8)Z(I®S5)=(Re®S) ("

Note that (Rg ® S) is the tensor product of G and H with has the same stationary
distribution; namely the uniform distribution. Moreover, (A ® S) has the same
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eigenvalues as A with the same multiplicity, since S has only one eigenvector with
eigenvalue 1 and the rest are all 0. In particular, for any vector z € RV*¢ orthogonal
to the stationary distribution on V' x [d], we have

[z, (I ®9)Z(I® S)x)| = |[{x,(Re®S)x)| <1—1¢.
Adding everything together we have
Yir(1=a) + 271 = ) + (1= 7)* = 1 = 1678,

as desired.

23.5 Additional notes and materials
This topic is also covered in [HLWO06, §9] and [Vad12, §4.4], which discuss additional
related topics.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials. Click on the links below for the following files:
o Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

23.6 Exercises

Exercise 23.1. Prove Lemma 23.3.
Exercise 23.2. Prove that the zig-zag product Z(G | H) is an undirected graph.

Exercise 23.3. Prove that the tensor product A ® B defines a linear map over R"*"
for A € R™*™ and B € R"*".

Exercise 23.4. Prove the tensor product identities in Eqgs. (23.3)—(23.5).

Exercise 23.5. Prove the operator norm inequalities in Eqgs. (23.6)—(23.8).
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Exercise 23.6. The goal of this exercise is to develop a randomized construction of a
constant degree expander.

Let d € N be a parameter to be determined. Let n be even. Consider the random
graph over n vertices where the edges are the disjoint union of (the edges of) d
uniformly random perfect matchings over the vertices. (G can have parallel edges.)
We will first show that G has conductance at least ¢ for some constant ¢ > 0. The
connection to constant degree expanders is made at the end.

The key claim is as follows.

With nonzero probability, for all disjoint S and T such that k = |S| < n/2
and |T| = k/6, some vertex in S is matched to a vertex outside SUT.

1. Show that the claim implies that [6(S)| > [S|/6 for all S with |S| < n/2.

2. Show that if also d = O(1), then the claim above implies that the union of
matchings gives a graph with constant conductance.

We will prove this claim probabilistically: our first goal is to fix S and T', and bound
the probability that all of S is matched to S UT. To this end, for fixed S and T,
consider the following randomized procedure which produces a perfect matching.

1. Index the vertices vy, ..., v, such that S = {vy,...,v;} and
T = {Uk+1> e 7U7k/6}-
2. Repeat n/2 times:

A. Let v; be the unmatched vertex of smallest index.

B. Sample v; from the remaining unmatched vertices (exclud-
ing v;) uniformly at random.

C. Match v; with v;.

3. Prove that the procedure above generates a uniformly random perfect matching.

4. Show that the probability that S is matched to (S UT) in all d matchings is at

—ad
most (Z,) . for some constant a > 0. (I got o = 1/6.)"

5. Now prove the key claim above for some constant d.

'For a single matching, the probability that S is matched to (S UT) is bounded above by the
probability that the first k/2 choices of v;’s are in SUT.
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Having now established that O(1) random matchings have constant conductance with
high probability:

6. Design and analyze an algorithm that produces a constant degree expander.
(That is, a regular constant degree graph whose random walk has constant
spectral gap 7.)*

2Hint: don’t forget about the minimum eigenvalue.
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Chapter 24

Reducing randomness with random walks

24.1 Introduction

Recall that a language L is in the class P if there is a deterministic poly(n)-time
algorithm that decides if an input z of size n is in L. This notion extends to randomized
algorithms as follows.

Definition 24.1. A language L is in the class RP if there is a randomized polynomial
time algorithm deciding L with the following probabilistic “one-sided” error guarantee:

1. Given an input x € L, the algorithm decides that x € L with constant probability
(say, 1/2).

2. Given an input x ¢ L, the algorithm always decides that x ¢ L.

A language L is in the class BPP if there is a randomized polynomial time algorithm
deciding L with the following probabilistic “two-sided” error guarantee:

1. Given an input x € L, the algorithm decides that x € L with probability 2/3.
2. Given an input x ¢ L, the algorithm decides that x ¢ L with probability 2/3.
We have the subsets

P C RP C BPP,

since of course, no error (P) is better than one-sided error (RP), which is better than
two-sided error (BPP). It is a major open question if these are equal. Many believe
that P = BPP. In practice, researchers treat a randomized algorithm with two-sided
error as a strong indicator for the existence of a deterministic one. Still, we do not
know really if P equals RP or if RP equals BPP.
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There is theoretical interest, sometimes under the heading of pseudorandomness,
in a refined understanding of how much randomness is required for various problems.
While the holy grail, P vs BPP, is hard to attack, there is a rich body of literature and
results moving towards a conclusion, producing many algorithmic ideas of independent
interest along the way.

Let L € RP, and fix an input size n. Suppose that an algorithm for L requires m
random bits to decide L with one-sided error 1/2. If we want to decrease the error to 0,
for some 0, then we could independently repeat the algorithm [log 1/d] times, taking
the disjunction of responses. This takes O(mlog(1/d)) random bits total. While
we typically de-emphasize the logarithmic overhead incurred from repetition, it is a
deep and natural question to ask if one can reduce or avoid the logarithmic overhead.
Surprisingly, one can:

Theorem 24.2. Given an algorithm in RP that uses m random bits and has probability
of error at most 1/2, one can decrease the error probability to § while increasing the
running time by a factor of log(1/d) and using a total of m + O(log(1/4)) random
bits.

There is an analogous result for BPP. The algorithm is the same as for RP, while
the analysis is different.

Theorem 24.3. Given an algorithm in BPP that uses m random bits to achieve
error 1/3 (on both sides), one can decrease the error probability to § while increasing
the running time by a factor of log(1/0) and using a total of m+ O(log(1/0)) random
bits.

The rest of this discussion is about proving Theorems 24.2 and 24.3.

24.2 High level overview: amplification by random walks

The algorithm that obtains the better-than-repetition amplification above is concep-
tually very clean. Let G be a constant degree expander with vertex set V' = {0,1}"
— that is, a vertex for every possible bit string of m bits. (We will have to address
how to implicitly build such a G later, but for now let us assume G is given.) First,
select a uniformly random vertex vy € V. (This takes m random bits). Then take a
random walk in G for O(log(1/0)) steps. Each step takes O(1) random bits. For each
vertex v; along the walk, use v; as the input for a new instance of the algorithm. For
algorithms in RP, output the disjunction (the “or”) of all the outputs. For algorithms
in BPP, output the majority vote.

It is easy to see that we use m + O(log(1/d)) random bits in total. To complete
the proofs of Theorems 24.2 and 24.3 there are two basic issues to address.
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1. We need to show that the bit strings generated by the expander are (probably)
useful, for both the RP and BPP settings.

2. We need to show how to efficiently make such a graph G.

For the second point, since G is exponential-size, this construction has to be implicit.

Random walks for RP. Consider the first point — why bit strings generated by
an expander graph act like totally random bit strings — for RP. The key lemma is
as follows.

Lemma 24.4. Let G = (V, E) be a reqular undirected graph whose random walk
has spectral gap . Consider a t-step random walk vi,ve, ..., vy € V where vy € V
is chosen uniformly at random. For any set B C V', the probability that the entire
random walk stays in B is

(1 =71 =),
where p = |B|/|V|.

We will prove this lemma later in Section 24.3. First let us derive Theorem 24.2
(on amplifying RP via expanders) in light of Lemma 24.4.

Let B be the set of vertices corresponding to “bad” bit strings causing the
randomized algorithm to err. Amplifying the original algorithm by a constant number
of repetitions as needed, we can make p arbitrarily small; say, 1/2. By Lemma 24.4, if
we take a random walk on an expander of bit string, the probability that the random
walk stays in B — and all bit-strings are bad — drops at a rate of (1 — ~/2)".

Random walks for BPP. We now present a similar lemma that is important for
BPP.

Lemma 24.5. Let € € (0,1) be fized. Let G = (V, E) be a regular undirected graph
whose random walk has spectral gap v > 1—¢€. Let f:V — [0,1] be a fized function
of the vertices. Let

w=E[f(v)] where v € V is sampled uniformly at random.

Consider a random walk vi,vs, ..., v € V where vy € V is chosen uniformly at
random. Then for all 3 > 0,

Z 6#"‘5 S Ceek((lJre)efﬁ)

PH;gﬂv»—u
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for a universal constant ¢ > 0. In particular, for (say) e < p/4, we have

_ €kp
<ce ¢

P > €[l

;Zf(vz‘)—ﬂ

=1

‘ k
for a universal constant ¢ > 0.

Analogous to our discussion for RP, Lemma 24.5 implies Theorem 24.3. We prove
Lemma 24.5 in Section 24.4.

Efficiently and implicitly constructing the expander graph. To make the
expander GG, we apply the following theorem, which is a tweak on our previous
construction for derandomizing random walks. We prove the following in Section 24.5.

Lemma 24.6. Let d € N, and Let H be a reqular undirected graph with d® vertices,
degree d, and spectral gap > 7/8. Define graphs G1,Gs, ... by

Gy = H?
G =Z((Gi® G’ | H)
Then Gy has spectral gap 1/2 and 9222 yertices. Simulating one step of a random

walk in Gy takes 2°®) time and O(log(d)) random bits.

Taking ¢ = log log m + O(1) gives the desired expander over {0,1}".

24.3 Amplifying RP: proof of Lemma 24.4

Let R be the random walk matrix on G. Let P : RV — RY be the projection onto R”;
that is,

L, if B
(Po) = D e
0  otherwise.

P is a linear function with P = PT and P? = P. One can think of P as the identity
matrix restricted to RP (and 0 everywhere else).

Consider the product PRP. Given a nonnegative vector x, PRPx drops all the
mass outside of B, take a step according to R, and again drops all of the mass outside
of B. In particular, the probability that the entire walk stays in B is

(1,(PRP)'(1/n)).

314



24. Reducing randomness with random walks Kent Quanrud
24.8. Amplifying RP: proof of Lemma 2/./ Fall 2025

We claim that PRP has mazimum eigenvalue < 1 — (1 — u)~y. If so, then

(1,(PRP)'1)

(1,(PRP)"(1/n)) = (1,1)

< (yp+1-7),

which completes the proof.
Since G is regular, R is symmetric, and we can write

R:%(1®1)+R’

where R’ has all of its eigenvalues in the range [1 — v, — 1]. Then
PRP =1P(1®1)P+ PRP.
n
We leave it to the reader to show that PR'P has all its eigenvalues in the range
[1 =~y —1].

Consider the first term (7/n)P(1 ® 1)P. We claim that it has maximum eigenvalue
yp = |B|/n, which would give the overall bound of

|PRP = | P& P + IPRP| <0+ 1-7,

as desired, where ||-- || is the operator norm.
We have
TPl®1)P=L(P1® P1).
n n

The maximum eigenvector of the outer product (Pl ® P1) is (proportional to) P1,
with eigenvalue

(P1,P1)* B

TP PL) (P1,P1) = |B|.
Thus

[rreonn]- 22

This gives the desired bound.
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24.4 Efficiently amplifying BPP

Lemma 24.5. Let € € (0,1) be fizred. Let G = (V, E) be a regular undirected graph
whose random walk has spectral gap v > 1—¢€. Let f:V — [0,1] be a fized function
of the vertices. Let

w=E[f(v)] where v € V is sampled uniformly at random.

Consider a random walk vy, vy, ..., v € V where vi € V is chosen uniformly at
random. Then for all § > 0,

> e,u+ﬂ < Cesk((l-‘re)e—,@’)

1 k
P 3 s -
i=1
for a universal constant ¢ > 0. In particular, for (say) e < p/4, we have

_ckp
< ce e

P > €l

1k
‘k;f(vi)_'u

for a universal constant ¢ > 0.

Proof. Initially the proof proceeds similarly to the Chernoff bound. We let us prove
the inequality on the upper tail. The lower tail follows similarly, and then we can
take the union bound over both. We have

k
P [Z fw) > k(l+e)p+ 5] < E[ee(f(vl)+~~-+f(vk))}6—6(14—6)16#—65_ (24.1)

i=1

The key identity is

BVt 00)] = Z(1, F(RF)F1) where F' = diag(e”/™),..., e7/t)

1
n
is the diagonal matrix with the exponentiated values along the diagonal. One way to
interpret the above is to first recall that R¥ models k steps of a random walk. Then
inserting F in between the R’s is like collecting the values e/(*) along the walk. We
claim the following.

Claim 1. (F'21, F(RF)FFY?1) < et e

n
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Assuming claim 1 holds, we have
(241) < et - eek((1+e)6fﬁ)’

as desired.
Let us now prove Claim 1. Since R has spectral gap > 1 — ¢, and R is symmetric,

we can pull out a (1 — e)-fraction of its leading eigenvector (corresponding to the

uniform distribution), writing

l—ce

R

(1®1)+R
n

where R’ has eigenvalues between € and —e. Thereby

pUegpiz 17 ¢ ‘P2 (1@ 1)FV2 4 FV2R EY?,
n

We claim the following.
Claim 2. FY2R'F'? has its eigenvalues between [eef, —ee].
Claim 3. FY*(1® 1)FY? has mazimum eigenvalue E{eef(”)}.
For the first claim regarding F'/2R'F'/2_ for any vector x
(w, F'PRFV) = (F'22, R/ (F'r)) < eHFl/%

= ez, Fa) < ee'|z||”,

I

where we repeatedly invoke the fact that the maximum eigenvalue of a symmetric
matrix is given by the Rayleigh quotient.
For the second claim, we have

F1/2(1 ® 1)F1/2 _ (F1/21 ® Fl/Ql)
which has maximum eigenvalue

[P = (1, F1) = Y@ = nB[e ).

This establishes the second claim.
Combining the two claims above, we have that F''/2 RF'/2 has maximum (absolute)
eigenvalue

|FY2RFV?| < ee + (1 — ) Be/™)].
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We expand the right hand side by the inequality ¢ < 1 + € + €2 for small |¢], giving
the upper bound

|F2RFV?| < e(14e+e) + (1= B[l +ef(v) + Ef(v)]
6(1—|—€—|—€2) +(1—c¢) 1—|—€N—|—62/L)
<1+ (€+€2)(M+6)

elete®) (ute)

IN

In turn, for the kth power, we have
H (Fl/QRF1/2>kH _ HFI/QRFl/ZHk < pkro)e(ute)
Finally, returning to the original quantity we wanted to sum, we have

1<F1/21’ F(RF)kF1/21> < ek(lth)e(,que) E[eef(v)} < (1 + O(E))e(k(1+e)e(u+e)).
n
as desired for Claim 1. U

24.5 Efficiently making large expanders

It remains to be shown that large expanders can be constructed efficiently. Previously,
in the interest of deterministic connectivity, we studied the amplification

GHz(cﬂ\H),

where the degrees and sizes of G and H are appropriately set. The primary goal of
the goal of that exercise was to increase the spectral gap given an input graph (with
bad spectral gap) in a space efficient manner.

Here our goal is slightly different, because simply want to make an expander over
2™ vertices without the burden of some bad input graph. That is, we simply want to
make a large - very, very large - expander. Note that we want to make this graph
implicitly and be able to take a step in the graph in O(polylog(m)) time per step —
importantly, this is doubly logarithmic in the number of vertices, 2™. If we apply the
construction form connectivity starting from a constant sized expander, we will end
up needing O(m) iterations to get up to 2™ vertices, since each iteration increases the
number of vertices of a constant factor. Thus, in contrast to before, the goal is to
increase the number of vertices given an expander as efficiently as possible.

Let us now restate the main lemma that we need to prove.
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Lemma 24.6. Let d € N, and Let H be a reqular undirected graph with d® vertices,
degree d, and spectral gap > 7/8. Define graphs Gy,Gs, ... by

G, = H?
Gy = Z(<Gt X Gt)2 ’ H)

Then Gy has spectral gap 1/2 and 9222 yertices. Simulating one step of a random
walk in Gy takes 2°0) time and O(log(d)) random bits.

We first recall the first two lemma’s that we proved previously.

Lemma 24.7. Let G = (V, E) be a reqular undirected graph n vertices and degree d.
Then G* is a reqular undirected graph on V with degree d*, with random walk map
R*. If R has spectral gap v, then R* has spectral gap 1 — (1 — 7)k.

Lemma 24.8. Let G = (V, E) be a regular undirected graph with n vertices and
degree d, with spectral gap vo. Let H be a reqular undirected graph with d vertices
and degree dy. Then Z(G | H) is a reqular undirected graph with nd vertices, degree
d% and spectral gap vav%.

The second lemma, regarding the zig-zag product, required the following structural
lemma about the tensor product of undirected graphs and their random walks.

Lemma 24.9. Let Gy and Gy be reqular undirected graphs with degrees dy and
dy and random walk matrices Ry and Ry respectively. Then Gi ® Go is a reqular
undirected graph with degree dids, Then the random walk matriz of G1 ® Gg, denoted
Ry ® Ry : RV"V2 5 RVIXV2js glso symmetric. The map

(Ul,UQ) S RVl X RV2 = v QU € RVlXV2

gives a one-to-one correspondance between pairs of eigenvectors from Gy to Gy, where
an eigenvector vy with eigenvalue A\ of Gy and an eigenvector vy with eigenvalue Ao
of G5 maps to an eigenvector v1 ® vy of G ® Gy with eigenvalue A\ As.

Let d € N be a fixed constant and let H be an undirected regular graph d* vertices,
degree d, and spectral gap 7/8. Let Gy = H?. We now generate graphs Gy, Gy, . ..
iteratively by

G = Z2((Gi@G)? | H).
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The various parameters of interest develop as follows.

Graph G - GG - (o6 - 2((G26)?|H)
Vertices n — n? - n? — n’d*
Degree P - = a® — d?

¥ v o=y = 2y=9" = 2y =)(7/8)?

We note that v > 1/2 implies (2y —4?) > 1/2, so the spectral gap never drops below
1/2.

24.6 Additional notes and materials

See [Vad12] for additional topics in pseudorandomness.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

24.7 Exercises

Exercise 24.1. The definition of RP allows for error probability 1/2 while BPP
requires a constantly strictly less than 1/2 (e.g., 1/3). Here we explore why.

Give a concise description of the family of all languages L for which there is a
randomized polynomial time algorithm that, given input x:

1. If z € L, decides that x € L with probability at least 1/2.

2. If o ¢ L, decides that o ¢ L with probability at least 1/2.

Exercise 24.2. Extend Lemma 24.4 to graphs G that are not regular.

Exercise 24.3. Extend Lemma 24.5 to graphs GG that are not regular.
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Chapter 25

Randomized Proofs and Verification by Random Walks

25.1 Randomized Proofs

Recall that the class P is the class of all polynomial time solvable problems, and
NP is the class of all languages that can be decided in non-deterministic polynomial
time. Equivalently, a language L is in NP if a membership = € L can be proven in
polynomial time. This means there exists a (deterministic) polynomial time algorithm,
called the verifier, that takes as input z € {0,1}" and an additional polynomial-sized
input y € {0, 1}pOIY("), called the proof. Based on z and y, the verifier decides if z € L
according to the following protocol:

o If x € L, then the verifier accepts x for some y.

o If x ¢ L, then the verifier rejects = for all y.

Obviously P C NP, and an outstanding open problem is whether P is equal to
NP. A long track record of failing to solve many NP problems of practical interest,
combined with the equivalence class of NP-complete problems, suggests that they are
not equal, but again, we cannot prove it. P vs NP is a fascinating question extending
beyond computation; see for example [Wig09].

Consider these questions from a randomized point of view. Suppose we granted
the verifier access to randomization, and relaxed our protocol to allow one-sided error.
Consider the following protocol for input = and proof y:

o If z € L, then for some y, the verifier always accepts x.

o If z ¢ L, then for all y, the verifier accepts = with probability < 1/2.

The proof is accessed in an oracle model, where the verifier can query the ith bit
from an oracle. For a language L, a (nonadaptive) probabilistically checkable proof
with r random bits and q queries, denoted PCP(r, q) is one that, given an input z
and oracle access to a proof y, decides if x € L via the following steps:

1. Given full access to  and O(r) random bits, the verifier chooses O(q)
locations in y to query.
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2. The verifier makes these O(q) queries.

3. Based on x, the O(r) random bits from (1), and the O(q) queries in
(2), the verifier decides if x € L.

The verifier can spend polynomial time inspecting the input x and the outcomes of
the O(r) coin flips to choose its queries. The queries to the proof are nonadaptive —
the 7th query does not depend on the outcome of the previous i — 1 queries.

Of course any language on NP has such a verifier; i.e., NP C PCP(0, poly(n)).
The question is, with randomization in hand, can the number of queries ¢ be reduced
from poly(n) to n°M?

Theorem 25.1 (PCP theorem). NP = PCP(O(logn),O(1)). Every NP language
has a probabilistically checkable proof with O(logn) random bits and O(1) queries to
the proof.

The PCP theorem is philosphically very interesting, giving a robust, “error-
correcting” extension to our deterministic notion of proofs.*

The PCP theorem has also had a large impact in hardness of approximation. As
we know all too well, many problems are NP-hard, which motivates approximation
algorithms for these problems. Are there also limits to approximations? Can we
expect better and better approximations over time for all problems, or is there also a
hard limit to approximations?

As a concrete example, consider the 3-SAT problem. The input is a SAT formula
with exactly 3 literals per clause, and (in the optimization formulation) the goal
is to satisfy as many clauses as possible. As discussed previously, if we randomly
assign each variable, then we get a 7/8th approximation. Surely, such a simple and
essentially oblivious algorithm could not be very good. Yet the PCP theorem leads to
the following remarkable theorem that 7/8th is optimal:

Theorem 25.2 ([Has01]). For all € > 0, it is NP-Hard to obtain a (7/8 + €)-
approximation to 3-SAT.

There are hardness of approximation results for many problems, connected to one
another via approximation-preserving reductions.

One direction of the PCP theorem is easier to prove than the other and left as an
exercise to the reader.

Exercise 25.1. Prove that PCP(O(logn),0(1)) C NP.

IThe old joke is that the PCP theorem implies a much faster way to grade algorithms homework.
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It remains to show NP C PCP(O(logn),O(1)): that is, every language in NP
has a probabilistically checkable proof.

The celebrated PCP theorem was developed in the late 80’s and early 90’s and was
born out of earlier developments investigating interactive proofs. Unfortunately the
mathematical techniques used in this original line of work have not been developed in
this class. Instead will present a more recent proof by Dinur [Din07] that is considered
to be simpler then the original proof of the PCP theorem. The machinery driving
Dinur’s approach will relate to recent discussions on random walks.

25.2 Constraint satisfaction problems

Let V' be a set of n variables, and let A be a finite alphabet. A k-ary constraint consists
of k variables vy, ...,v, € V and a subset S C A¥. An assignment o : V — A satisfies
the constraint if (o(v1),...,0(vg)) € S. In g-ary constraint satisfaction problems, we
are given m g-ary clauses over a set of n variables V' and a finite alphabet A. The goal
is to maximize as many clauses as possible. For a CSP P, we let UNSAT(P) denote
the minimum fraction of unsatisfied clauses of P over all P. (e.g., UNSAT(P) = 0 iff
P is satisfiable.)
Our discussion is about proving the following theorem in particular.

Theorem 25.3. There are integers ¢ > 1,|A| > 1 such that, given a q-ary CSP over
alphabet A, it is NP-hard to decide whether

1. All clauses can be satisfied (UNSAT(P) =0).
2. Less than or equal to half the clauses can be satisfied UNSAT(P) > 1/2.
It is equivalent to the PCP theorem.
Theorem 25.4. Theorems 25.1 and 25.3 are equivalent.
The proof is left to the reader in the following exercise.

Exercise 25.2. Prove Theorem 25.1 and Theorem 25.3 are equivalent. Below we give
part of the proofs, in both directions, to get you started.

1. Theorem 25.1 = Theorem 25.5. Suppose the PCP theorem, Theorem 25.1,
is true. That is, every NP language L has a verifier on input z and proof y that
reads r = clog n random bits and querys ¢ = O(1) bits from y, and correctly.
We want to show that (1/2)-approximate for CSP — that is, deciding between

323



25. Randomized Proofs and Verification by Random Walks Kent Quanrud
25.3. Graph CSP, and amplification Fall 2025

whether a CSP is (perfectly) satisfiable or if at most 1/2 of the clauses can be
satisfied — is NP-Hard.

Fix a language L in NP. Given input x of size n, we want to form a CSP
problem P such that deciding between UNSAT(P) = 0 and UNSAT(P) > 1/2 is
equivalent to deciding if x € L. By the PCP theorem, there exists a verifier
that flips at most = clog(n) coins and reads ¢ = O(1) bits from the proof and
decides whether to accept or reject. Let A = {0, 1} be the alphabet, and make
a boolean variable v; for every location 7 of the proof that might be accessed by
the randomized verifier. Note that this creates at most ¢2" = poly(n) boolean
variables. Now, for each z € {0,1}", representing an outcome of the coin tosses,
we defined a clause C', with variables... and accepting the set of assignments...

2. Theorem 25.3 = Theorem 25.1. Conversely, suppose that it is NP-Hard to
decide between UNSAT(P) = 0 and UNSAT(P) > 1/2 for a given CSP problem
P. This means that for every language L, there is a transformation that, given
an input x of size n, produces a g-ary CSP P, with poly(n) constraints such
that € L iff UNSAT(P,) = 0 and x ¢ L iff UNSAT(P,) > 1/2. We create a
probabilisticaly checkable proof system where...

25.3 Graph CSP, and amplification

Consider the special case of binary CSP (i.e., ¢ = 2). This means that every clause
consists of two variables v;,v, and a subset of satisfying pairs S C A%2. We will
prove that binary CSP with a constant alphabet size (for some constant) is hard to
approximate in the sense of Theorem 25.3.

Binary CSP can be modeled as a graph problem. We think of each variable v € V
as a vertex. For every clause over two variables v, v9, we have an edge between v, and
vy labeled by that clause. Note that we can have parallel edges if there are multiple
clauses for the same pair of vertices. To emphasize this graphical viewpoint, we call
binary CSP problems graph CSP from now on.

Graph CSP is NP-Hard even for 3 letters in the alphabet. In particular, 3-
colorability” is a special case of graph CSP that is NP-Hard. In our CSP terminology,
this means it is NP-Hard to decide if UNSAT(G) = 0. Since 3-colorability has one
constraint per edge we can recast this as saying that it is NP-Hard to decide if
UNSAT(G) = 0 or if UNSAT(G) > 1/m, where m is the number of edges. We take this
as our starting point, and the goal is now to “amplify” the graph CSP problem so

23-Colorability asks if the vertices of a given graph can be labeled by one of three “colors” such
that each color forms an independent set.
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that it is NP-Hard to distinguish between UNSAT(G) = 0 or UNSAT(G) > ¢, for some
fixed constant c.

Iterative amplification - an overview. For inspiration, we briefly recall the
deterministic logspace algorithm for (s,t)-connectivity [Rei08]. This problem was
actually easy for constant degree expanders, but of course the input graph is generally
not a constant degree expander. The goal becomes to implicitly convert the graph
into a constant degree expander. There we iterated between powering the graph —
amplifying the spectral gap — and taking a zig-zag product with a constant degree
expander — sparsifying the graph. Together these operations formed a net gain in the
spectral gap, while keeping the degree constant. A logarithmic number of iterations
transformed the input graph (implicitly) into a constant degree expander.

The proof of Dinur [Din07] is similar in spirit, trying to amplify a graph CSP by a
series of transformations. In fact Dinur mentions deterministic log-space connectivity
as an inspiration. Here we have three basic transformations:

1. Ezxpander-ification, where we make the underlying graph a constant degree
expander.

2. Error amplification by powering, where we amplify the UNSAT of the graph by
taking a power of the graph and creating new constraints appropriately.

3. Alphabet reduction. Where we reduce the alphabet size of the graph CSP (which
increases in the powering step).

Each of these three steps take as input one graph CSP G and outputs another, G'.
As we analyze these steps, we will be careful to ensure the following critical properties.

1. Completeness: 1f UNSAT(G) = 0, then UNSAT(G') = 0.

2. Soundness: UNSAT(G') > S UNSAT(G) for some value § > 0.

For soundness, we want § > 1, but an individual operation may have g < 1 if it is
principally concerned with managing other parameters (such as the alphabet size,
or the degree). We will show that the three steps together gives § > 1, for a fixed
constant (3, while keeping the other parameters under control (and more precisely,
universal constants).

Expander-ification. Let us break down these steps in a little more detail. The first
step, “expander-ification”, preprocesses G so that it is a constant degree expander.
The constant degree is important because the subsequent power step has to blow up
the size of the alphabet exponentially in the degree. The spectral gap is important
for the alphabet reduction step after that.
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Lemma 25.5. There exists universal constants d € N, v > 0, and 1 > 0 for which
the following holds. Given an instance of graph CSP G, one can compute an instance
of graph CSP G’ with the following properties.

1. The graph supporting G' is a d-reqular undirected graph.

2. G’ has the same alphabet size as G.

3. 01 UNSAT(G) < UNSAT(G') < UNSAT(G).

4. The spectral gap on G’ is > ~.

5. The size of G' is at most a constant factor greater than the size of G.

We prove Lemma 25.5 in Section 25.4.

Error Amplification. The next step, powering, is where we amplify UNSAT. Recall
that in normal graphs, taking the kth power means we generate an edge for every
k-edge walk in the input graph. The resulting graph is denser and the spectral gap is
larger.

Powering a graph CSP is similar in spirit but more complicated since we must
address the CSP aspects as well. Here we give a high level sketch. The underlying
graph will be the kth graph power. Each edge {u, v} in the powered graph corresponds
to a k-edge walk in the original graph, which corresponds to k binary constraints.
Loosely speaking, these k£ constraints are combined into one large constraint that in
some sense requires all k constraints to be satisfied simultaneously. Intuitively, this
increases the unsatisfiability since we now have to simultaneously satisfy £k clauses in
the input graph CSP to satisfy just 1 clause in the powered graph CSP.

For this idea to make syntactic sense, we have to increase the alphabet so that for
each “power constraint” of £ input clauses, each vertex has “k letters” to be supplied
to each of the clauses. Thus the alphabet expands from A to A%"; i.e., d* letters per
vertex. These d* labels for a vertex v are interpretted as labeling the entire k-step
neighborhood of v.

Again, this is only a high-level description, and we explain the construction much
more carefully in Section 25.5. All put together, the bundled constraints ramp up
UNSAT, but we pay the price of a much larger alphabet size.

Lemma 25.6. Let d,~,|A| be fized. Then there exists By > 0 for which the following
holds for all t = 2s + 1 where s € N. Let G be a reqular graph CSP over an alphabet
A with degree d and spectral gap (at least) . Then one can compute a graph-CSP G*
with the following properties.
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1. G is reqular with degree d*, alphabet A?, and the random walk on G* has
spectral gap 1 — (1 —~)".

2. If UNSAT(G) = 0, then UNSAT(G") = 0.
3. UNSAT(G') > BQﬂmin{UNSAT(G), %}

Like many of our recent discussions, this will be based on analyzing random walks
on (G, and here we will see a dependence on the spectral gap v in the parameter fs.

Alphabet reduction. The third step addresses the blow up in alphabet size from
powering the graph CSP.

Lemma 25.7. There exists constants C' € N and 5 € (0,1) for which the following
holds. Given a regular graph CSP G with alphabet A, one can compute a graph CSP
with size f(|A])|G| such that

B3 UNSAT(G) < UNSAT(G') < UNSAT(G).

Putting it all together. All put together, these three operations take as input
one graph CSP G over a constant-sized alphabet Ay and outputs another graph
CSP G’ over the same alphabet. For a parameter ¢ € N, if UNSAT(G) is a universal
constant factor smaller than ¢, then UNSAT(G’) is at most a universal constant factor

Step input e‘xpan.der— powering alphal?et
ification reduction
Lemma 25.5 25.6 25.7
Degree arbitrary — do — dh —  arbitrary
v arbitrary — Y — 1—(1—n)" — arbitrary

UNSAT(G) a — Brax = Vipfa, = Vb

Alphabet A = A - Ado N A

Figure 25.1: In the row for UNSAT(G), we assume that Sja < 1, since otherwise UNSAT(G)
is at least a constant and we are done.
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smaller than v/# UNSAT(G). (See Fig. 25.1.) By making ¢ a sufficiently small constant,
this means that if UNSAT(G) is smaller than a universal constant, than UNSAT(G')
is greater than UNSAT(G) by a universal constant > 1. That is, we've successfully
amplified UNSAT without increasing the input size.

25.4 Expander-ification

The first transformation preprocesses the graph-CSP to be a constant degree expander.
We proceed in two stages where the first stage addresses the degree and the second
stage addresses the spectral gap.

To make the degree small and uniform, we replace each vertex v € V with a low
degree expander as follows.

1. For each vertex v and each edge e incident to v, we
create a new vertex (v, e).

2. For each edge e = (u,v), we have an edge from (u, e)
to (v, e) with the same constraint as e.

3. Fix v. We currently have an auxiliary vertex (v, e)
for every edge e incident to v. Let G be a dy-regular
expander with vertex set {(v,e)}. For each edge e
in the expander, we assign the “equality constraint”

C.={(a,a):a€ A} C A%

Exercise 25.3. Let G’ be the graph CSP obtained from G via steps 1-3 above. Prove
that GG’ has the following properties:
(a) The total number of edges of G’ is within a constant factor of the number of
edges of G.
(b) G’ has the same alphabet as G.
(c) G'is a d-regular graph for a universal constant d.
(d) cUNSAT(G) < UNSAT(G") < UNSAT(G) for some universal constant c.

We now assume that G = (V, E) is regular with constant degree d = O(1). We now
make GG an expander while retaining the degree. This is done by simply overlaying
another expander

Let H = (V, Ey) be a constant degree expander on the same vertex set V. For
all e € Ey, let C, be the trivial constraint that allows for all pairs of labels. Let
G' = (V, E + Ey) be the graph-CSP combining the clauses from G and H. The G’ is
an expander while retaining the salient properties of G, which is left to the reader to
show.
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Exercise 25.4. Prove the following properties about the graph-CSP G’ = (V, E+ Ey)
described on the previous page.

(a) G’ has constant degree.

(b) G’ has constant spectral gap 7.

(c) The total size of G’ is at most a constant factor greater than G'.

(d) Q(uNsSAT(G)) < UNSAT(G') < UNSAT(G).

Combining our two preprocessing steps gives Lemma 25.5.

25.5 Error amplification

We now turn to the error amplification stage. The input is a graph-CSP G where
the underlying graph is a regular expander with constant degree d. The goal is to
produce a new graph-CSP G’ that (a) is satisfiable iff G is satisfiable, and (b) has
substantially larger UNSAT(G’) when G is not satisfiable. Thanks to the preceding
preprocessing step, we can assume that G is a d-regular expander. We also assume
that |A| is a fixed constant.

Dinur [Din07] offers the following helpful intuition. Fix an assignment 7 :V —
A. Suppose we sample t edges in G uniformly at random and test if any of the
corresponding constraints are not satisfied. The probability that at least one of
them is unsatified is 1 — (1 — UNSAT(G))" &~ ¢t UNSAT(G) (for UNSAT(G) small). To
embed this logic into a CSP, consider the (non-binary) CSP where for every t edges
e1,...,e of G, we make a constraint over the (at most) 2¢ underlying vertices, which
is satisfied iff all ¢ constraints at ey, ..., e; are satisfied. This CSP will have UNSAT
value 1 — (1 — UNSAT(G))" & ¢t UNSAT(G), which is good. However, (a) the resulting
CSP is no longer binary, and (b) the number of constraints in the CSP increases
substantially from m to roughly m/.

In short, we can increase UNSAT by independent repetition, but encoding this
directly as a graph-CSP is inefficient. We want to replicate the overall effect but in
a more efficient and graph-friendly manner. Recall that an expander graph mixes
rapidly, and a random walk on an expander graph behaves similarly to uniform
sampling. Here (the underlying graph of) G is a constant degree expander. Since G is
an expander, then the t-step walks should behave like independent samples of ¢ edges.
We will create a graph-CSP instance on top of the t-th graph power of G.

Powering a graph-CSP. We sketched the construction in Section 25.3 and now we
describe it in full detail. Consider the graph G* that has edges corresponding to lazy
t-step random walks. More precisely, let us generate for each vertex v, d self-loops at
G. Call this graph G; a random t¢-step walk in GG, corresponds to a lazy t-step walk
in G. We create an edge (v, v;) in G* for every t-step walk (v, ..., v;) in Gp.
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For a vertex v, let N*(v) denote the set of vertices within ¢ steps of v in G (including
v). We have

t
‘Nt(v)‘ <D where D=>"d = (1+d)".
i=0

We use the alphabet A”. We identify an AP-label 7(v) € AP as an A-labeling of all
of N*(v). We let m(v,w) € A denote the label assigned by 7(v) to w € N*(v).
For each t-step walk w = (vg,...,v;) in G, which corresponds to a distinct

edge e, between vy and v, in G*, we create a constraint C,, that is satisfied by
7(vo), 7(vy) € AP iff the following holds.

(a) For each edge e = (v, v;41) € w, the labels (7(vg, v;), T(ve, viy1)) € A? satisfies
the constraint C, in G.

(b) For all i, 7(vg, v;) = m(vg, v;).

Property (a) is where we must satisfy all £ underlying constraints. Property (b) forces
vo and v; to agree on all the vertices along the walk.

Analysis. It is easy to see that a satisfying assignment for G gives a satisfying
assignment for G*. In the converse direction, we want to show that if G has nonzero
UNSAT(G), then G' has substantially larger UNSAT(G). In particular we will show
that UNSAT(G") > poly(t) UNSAT(G).

We prove this via the contrapositive: given any labeling 7 : V — AP, we derive
a labeling 7 : V' — A and show that UNSAT(7 | G) < poly(1/t) UNSAT(7 | G'). The
labeling 7 is derived from 7 as follows.

Fix v € V. Let vyg = v,vq,... denote a lazy ran- N W\L‘a

dom walk starting from v. Consider the random label
ﬁ(vt /21 U). We define 7(v) to be the most likely label to arise as %(Ut /2 v). We have
P|7 (v, 0) = w(v)] > 1/]4], (25.1)

which as far as we're concerned, is at least a constant. Up to constants, (25.1) extends
to indices close to t/2. Let I = {z i —t/2| < \/t/Q}.

Lemma 25.8. For sufficiently large t, there exists a universal constant ¢ > 0 such
that for alli € I,

P[7(v;,v) = 7(v)] > ¢/|Al.
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We briefly sketch the intuition and postpone the formal proof
to the end of the section. Because all i € I are very close to
t/2, the number of “non-lazy” steps j in an i-step random walk is
distributed almost the same for all ¢ € I. Conditional on j, 7(v;, v)
is independent of i. Putting these two facts together means that
7(v;,v) is distributed very similarly for all 4, and in particular, similar to ﬁ(vt /2, v).

Before proceeding to the main part of the proof, we require one more technical
lemma that brings into play the assumption that G is an expander. Recall that the
edges along a random walk in an expander behave almost independently. This is
reflected in the following lemma.

11} Kavfhs

Lemma 25.9. Let F' C E be any subset of edges, and let p = |F|/|E|. Consider a
random walk vy, vy, ve, ... in G, where initially vy is a uniformly random endpoint of
a uniformly random edge from F'. Then

P[(v;,vi41) € F] < p+ (1 —7)".
for all i, where v is the spectral gap of G.

We postpone the proof of this lemma as well until the end of the section, and
instead turn to the main claim. In the following, note that we will take t to be a
constant, so if UNSAT(7 | G) > 1/t then we have already accomplished our main goal.

Lemma 25.10. UNSAT(7 |G") > Q(ﬂ) min{UNSAT(W | G), %}

Proof. Let F' C E be the set of edges failed by 7, and let u = |F|/|E| = UNSAT(7 | G).
If o > 1/t, then drop edges from F until g < 1/t. We have 1/t > p >
Q(1) min{unsar(r | G), 1}.

Let w = (vp, ..., v;) be a lazy t-step walk in G sampled uniformly at random. For
each i € I, we define a random indicator variable X; € {0,1} where X; = 1 if, letting
e; = (vi_1,v;) be the ith edge in w,

(a) The ith edge in w, e; = (v;_1, v;), has labels 7(v;_1,v0) = 7(v;_1) and T (v, v;) =
7T(’UZ‘).
(b) Either e; is a loop or 7 fails the constraint C,.

Let X = > ;c; Xi. Observe that UNSAT(G') > P[X > 0]. We make two claims

about X.

Claim 1. For alli € I, E[X;] > Q(1)pu.

Claim 2. E{Xﬂ < O(\/%),u.
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We will prove the claims later. Let us first assume they hold and complete the proof.
Linearity of expectation and claim 1 gives E[X] > Q(ﬂ)u We also have

E[X]? = E[X| X > 02P[X > 0] £ E[X?| X > 0| P[X > 0] = E[X?| P[X > (]

by (a) Jensen’s inequality (for the convex function f(z) = z%.) Rearranging and
applying the claims, we have

pix > 0> B o(viu

as desired.

It remains to prove the claims, starting with claim 1. Suppose we sample X;
alternatively as follows. Sample an edge (v;_1,v;) uniformly at random. Take lazy
random walks v;_1,...,v9 and v;, ..., vy, and output the walk w = (vg, ..., v;). This
produces a uniformly random lazy walk because G is regular. We have

P[X;, = 1] = p-Plr(vo,vi—1) = w(vi—1)] P[7(vg, v;) = 7(v3)].

Recall from Lemma 25.8 that, for ¢ € I, the marginal probabilities of 7(vy,v;) are
within a constant factor of the marginal probabilities of W(Ut, vy /2), which in turn is
at least 1/|A|. Similarly for 7(vg,v;). Thus

P[X, = 1] > Q)u/|AP* = Q).

as desired.
The remaining claim, claim 2, is about the variance of X =3 ,c; X;. To this end
we have an intermediate claim analyzing the cross-terms X;X;.

Claim 3. Leti,j € I withi# j. Then B[X;X,] < u(u +(1— 7)J‘—i—l),

Let us define random indicators variables Y;,Y; € {0,1} that indicate whether the
ith edge is in F'. Then 0 < X; <Y, hence E[X;X;]| < E[Y;Y]]. Write

E[YY}] = BV EY;|Y; = 1] = uE[Y; | Y]],

The remaining term, E[Y;|Y; = 1], is equivalent to the probability that a random
walk starting at a random endpoint of a uniformly random edge in F' takes its (j —i)th
step in F. By Lemma 25.9, this probability is at most p + (1 — )’ """
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Now we prove claim 2. We have

E|X?| =Y E[X,] +2 ) E[X;X]]

icl ijel
1<]
< pl| 4202 [ +2p Y- (1 =)
1,761

1<j

(c)
2l + 2211 < (Vi)

Here (b) is by claim 3. (c) is because p > 1/t and |I| = O(\/f)
This completes the proof of Lemma 25.10. O

This establishes, modulo Lemma 25.8 and Lemma 25.9 which were introduced
earlier in the section. The remainder of this section is devoted to proving these
lemmas.

An expander mixing lemma for edges. Let us first prove Lemma 25.9 since
it is arguably more interesting. In particular, it reveals why it is important that G
is an expander graph. We briefly recall the motivation. We want to argue that the
failed edges F' are not too correlated along random walks. This is because if they are
correlated, then the number of bad edges per walk, X in our high analysis, will have
high variance (and in particular, claim 2 will fail).

Lemma 25.9. Let F' C E be any subset of edges, and let yn = |F|/|E|. Consider a
random walk vy, v1, Vs, ... in G, where initially vy is a uniformly random endpoint of
a uniformly random edge from F'. Then

P(v;,vi41) € F] < p+ (1 =)',
for all i, where v is the spectral gap of G.

Proof. Let G be a regular undirected graph and let R be the random walk map. Let
x € AV be the initial distribution for vy. For each vertex v, we have

(# edges in F' incident to v)
2|F| '

z(v) =

Note that x(v) < (d/2|F]) for all v. Define y : V' — [0, 1] be setting, for each v € V,

# edges in F' incident to v 2|F
o) = ¢ ; N Eare)
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This is equal to the probability that a random step from v is in F. The probability
that the tth step is in F' is exactly

_ 2|F]

Pl(vi_1,v) € F] = <y,Rt’1x> ¥

<x, Rt’1x>.
Since G is a regular undirected graph with spectral gap -, we can write
1
Rl=-(1e1)+R
n

where ||R'|| < ~'"!. The remainder of the proof is left to the reader in the following
exercise. [
Exercise 25.5. Complete the proof above via the following steps.

1. Prove that (z, R"'z) <+ 4 72t|_F1|d-

2. Prove that P[(v;_1,v;) € F] < % LoAtt

Similarity of lazy random walks. The final lemma to prove is about how lazy
1-step walks act similarly for different ¢« € I. We start by stating the following lemma
about binomial distributions.

Lemma 25.11. For every ¢ > 0, there exists some constant z € (0,1) and ny such
that, if ng <n —+/n < m < n+/n, then for all k such that |k —n/2| < cy/m, we
have
P[B, =
2 < ——=
~ P[B,, = k]

IA
S

The proof of Lemma 25.11 is given as exercise 25.7. Let us continue to prove
Lemma 25.8.

Lemma 25.8. For sufficiently large t, there exists a universal constant ¢ > 0 such
that for all i € I,

P[7(vi,v) = 7(v)] > ¢/|Al.

Proof. For i € N, let B; be the number of non-lazy steps out of the first k steps in the
lazy random walk. Choose ¢ > 0 such that the probability that ‘Bt/z —t/ 4‘ > e/t <

1/2]A|. For ease of notation, let E; be the event that 7(v; |vg) = m(vg). We want to
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u (w1, ) (1, 5. s 100)
’ -\
Ce3 Cel — f63 fel - 631'/ % \rl ;/% \fl h

2 o \/,é%?§§§x

G,
Figure 25.2: A high-level schematic for the alphabet reducing transformation in Section 25.6,
on a triangle graph.

show that for ¢ € I, we have P[E;] > Q(l)P[Et/g}. Let J = {j S —t/4] < c\/t/2}
We have

P[E] > Y P[E;| B; = j]P[B; = j]

JjeJ
S =Y P[E| B, = j|P[Bys = j]
Jj€J
&) z Z P{Et/g ‘ Bt/g = j} P[Bt/Q = ]}
JeJ
g Z<P [Et/g} - 2|1f1|> g gP[Et/Z}a

as desired. Here (a) is by Lemma 25.11, for ¢ sufficiently large and z the constant
asserted in Lemma 25.11. The reason for (b) is left as an exercise below. (c) is by

choice of ¢. (d) is because P [Et/g] > 1/|A]. O
Exercise 25.6. Justify equality (b) in the proof of Lemma 25.8.

25.6 Alphabet reduction

This section is about the third graph-CSP transformation reduction, where the goal
is to reduce the size of the alphabet. We take as input a graph CSP G with alphabet
A. Our goal is to reduce the alphabet to an alphabet Ay where |Ag| is a universal
constant. (In fact, the full details reveal that |A4y| = 8.)

Step 1: Reduce the alphabet size to 2 with an error correcting code. Let
C: A — {0,1}" be an error correcting code with ¢ < O(log(]A|)) and relative distance
p € [0,1]; that is, for any distinct a;,ay € A, the encodings C(ay),C(as) € {0,1}
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differ in at least pf¢ bits. We will create a uniform (2¢)-ary CSP with binary alphabet
{0,1}. Such a CSP can be interpreted as a (2¢)-uniform hypergraph with hyperedges
labeled by boolean formulas over the endpoints defining a constraint.

For each vertex u, let V,, = {uy,...,us} be a new set of ¢ vertices. For each edge
e = (u,v) € E with constraint C,, we create a hyperedge with endpoints V,, U V,, with
the constraint f, : {0,1}" x {0,1}"* — {0,1} defined by

1 if z, =C(ay) and x, = C(ay) for some (aq,as) € C,,
£ () = | (a1) (a2) (a1, az)

0 otherwise;
where we identify a boolean assignment z, : V,, — {0,1} as a length ¢ bit string
(2a(wr), .., zu(ug)). Welet F, = { (x4, 20) © folu, 2,) = 1} € {0,1}"*"" denote the
set of satisfying assignments for f,.

Step 2: Replace each hyperedge constraint with a graph CSP. The next
step converts the hypergraph generated above into a graph. We will apply a certain
operation hyperedge-wise that reduces each hyperedge independently to a graph CSP.
Analyzing this operation requires new (Fourier-analytic) techniques that are better to
discuss separately (Chapter 27). For now we will just use it as a black box.

Let ¢y > 0 be a parameter A be a finite alphabet of cardinality to be determined.
For each formula f., we construct a graph-CSP G, = (V., E., Ay, {Ces: [ € E.}),
where V,,, V,, C V., and which has the following properties.

1. Completeness: If f.(x,,,) =1, then we can extend (z,,z,) : V, UV, — {0,1}
to an assignment o : V, — Ag that satisfies all of G..

2. Soundness: If f.(x,,x,) = 0, then any extension o : V, — A of (x,,x,) has
error proportional to the relative Hamming distance between (z,, z,) and F..

UNSAT(0 | G.) > e dist((zy, ), Fe)

for all extensions o of (z,,z,), where dist(a, b) denotes the relative Hamming
distance between a and b.

Moreover, the parameter ¢, and the size of Ay depending only on [¢|. The size of |E,|
is the same for all e.

In lieu of a proper analysis, we provide some high-level comments. For each edge e,
we transform a boolean function on 2/ variables to a graph CSP with finite alphabet
size and possibly a few more variables. There is no particular concern for the size
of the graph CSP as long as it is consistent across . Why? Because it is a local
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operation applied edgewise. The input f. ultimately can be described in O~(2£) bits,
and ¢ is independent of n. So however much things may blow up locally, we are still
blowing up a constant to a constant.

The above construction, that is applied to each boolean function, can be understood
as an inefficient and distance-preserving PCP.

Analysis. Thus we have a two-step process that takes one graphical CSP and
produces another with a constant alphabet size. Between the two steps we have a
hypergraph CSP over the alphabet {0,1}. We assume that step 2 is implementable,
and defer those details to Chapter 27.

For each e, let V! =V \ (V, UV,) be the set of variables introduced by G.. Let
V"= U, V! be the set of all newly introduced variables.

Lemma 25.12. UNSAT(G) < UNSAT(G).

Proof. Let m : V. — A be an assignment that attains UNSAT(G). Recall that the
vertices of G’ can be divided into vertices V,, (where v € V') corresponding to the
input vertices, and vertices V! (where e € FE) introduced by the edge-wise CSP’s
G.:ee k.

1. For each u € V, we label V,, with the encoding C(m(u)).

2. For each V! where e = (u,v) € E, given the labels already on V,, and V,,, label
V! as to maximize the number of satisfied constraints in G..

Now, for every edge e satisfied by 7, all the constraints from G, are satisfied by
the labels in V. Since each G, generates the same number of constraints, this implies

that UNSAT(G) < UNSAT(G). O

Lemma 25.13. For 33 = ¢yp/4, we have

33 UNSAT(G) < UNSAT(G).

Proof. Let @ : V — Ay be an assignment for 7 that attains UNSAT(G). Let 7: V — A
be the assignment defined by decoding; for each vertex v, we have

w(v) =D(7(v1),...,7(ve)).

We claim that for each edge e that is not satisfied by m, a Ps-fraction of G.
is unsatisfied for some value B3 that depends on |Ag| and p. It then follows that

UNSAT(G) > (3 UNSAT(G).
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Let e = (u,v) be an edge that is not satisfied by 7. For ease of notation, let us
denote

U= (i, ..., 10) and 7(@) = (T(u), ..., 7(u)).

Since (w(u) = D(u), 7(v) = D(v)) did not satisfy the constraint C,, and the code
C:A— {0, 1}6 has relative distance p between any two code works, it follows that
(m(u), m(v)) relative distance at least p/4 from the set of satisfying encodings, F,. By

the soundness property, then, 7 must fail to satisfy at least an (egp/4)-fraction of
G.. O

25.7 Additional notes and materials

See [AB09, Chapter 11] for further background on the PCP theorem.

Spring 2024 lecture notes. Click on the links below for the following files:
« Handwritten notes prepared before the lecture. (Part 1)

Handwritten notes annotated during the presentation. (Part 1)

Handwritten notes prepared before the lecture. (Part 2)

Handwritten notes annotated during the presentation. (Part 2)

Recorded video lecture.

Fall 2022 lecture materials, part 1. Click on the links below for the following
files:

Handwritten notes prepared before the lecture.
Handwritten notes annotated during the presentation.
e Recorded video lecture.

Fall 2022 lecture materials, part 2. Click on the links below for the following
files:

e Handwritten notes prepared before the lecture.

o Handwritten notes annotated during the presentation.

e Recorded video lecture.

25.8 Exercises

Exercise 25.1. Prove that PCP(O(logn),0(1)) C NP.

Exercise 25.2. Prove Theorem 25.1 and Theorem 25.3 are equivalent. Below we give
part of the proofs, in both directions, to get you started.
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1. Theorem 25.1 = Theorem 25.5. Suppose the PCP theorem, Theorem 25.1,
is true. That is, every NP language L has a verifier on input = and proof y that
reads r = clog n random bits and querys ¢ = O(1) bits from y, and correctly.
We want to show that (1/2)-approximate for CSP — that is, deciding between
whether a CSP is (perfectly) satisfiable or if at most 1/2 of the clauses can be
satisfied — is NP-Hard.

Fix a language L in NP. Given input x of size n, we want to form a CSP
problem P such that deciding between UNSAT(P) = 0 and UNSAT(P) > 1/2 is
equivalent to deciding if + € L. By the PCP theorem, there exists a verifier
that flips at most r = clog(n) coins and reads ¢ = O(1) bits from the proof and
decides whether to accept or reject. Let A = {0, 1} be the alphabet, and make
a boolean variable v; for every location ¢ of the proof that might be accessed by
the randomized verifier. Note that this creates at most ¢2" = poly(n) boolean
variables. Now, for each z € {0,1}", representing an outcome of the coin tosses,
we defined a clause C', with variables... and accepting the set of assignments...

2. Theorem 25.3 = Theorem 25.1. Conversely, suppose that it is NP-Hard to
decide between UNSAT(P) = 0 and UNSAT(P) > 1/2 for a given CSP problem
P. This means that for every language L, there is a transformation that, given
an input x of size n, produces a g-ary CSP P, with poly(n) constraints such
that © € L iff UNSAT(P,) = 0 and = ¢ L iff UNSAT(P,) > 1/2. We create a
probabilisticaly checkable proof system where...

Exercise 25.3. Let G’ be the graph CSP obtained from G via steps 1-3 on page 328.
Prove that G’ has the following properties:
(a) The total number of edges of G’ is within a constant factor of the number of
edges of G.
(b) G’ has the same alphabet as G.
(¢) G'is a d-regular graph for a universal constant d.
(d) cUNSAT(G) < UNSAT(G") < UNSAT(G) for some universal constant c.

Exercise 25.4. Prove the following properties about the graph-CSP G’ = (V, E+ Ey)
described on page 328.

(a) G’ has constant degree.

(b) G’ has constant spectral gap .

(c) The total size of G’ is at most a constant factor greater than G'.

(d) Q(UNSAT(G)) < UNSAT(G') < UNSAT(G).

Exercise 25.5. Complete the proof above via the following steps.
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+ ,thld

1. Prove that (x, R 1x) < R

1
n

2. Prove that P[(v;_1,v) € F] < % + L

Exercise 25.6. Justify equality (b) in the proof of Lemma 25.8.

Exercise 25.7. For n € N, let B,, be a binomially distributed random variable with
probability p = 1/2. Prove the following.

For every ¢ > 0, there exists some constant z € (0,1) and ng such that, if
no <n—/n<m<n+/n, then for all k such that |k —n/2| < cy/m, we have

P[B, = k|

1
< < —
“=PB,=k "2
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Chapter 26

Discrepancy via Gaussian random walks
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26.1 Balanced coloring

Let Si,...,Snm C [n] be a collection of m sets of a universe of n points. We would
like to color all the points in one of two colors so that each set has the same number
of points of each color, or as close to the same as possible.

More formally, we encode colorings as vectors x € {—1,1}" where —1 indicates
one color and +1 indicates the other. For a set 5;, let

z(S) €Y a

JES;

denote the sum over the coordinates in S;. The discrepancy of S; is defined as absolute
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difference between the number of points of each color,

lz(Si)| = :

>

JES;

The goal is to color the points as to minimize the maximum discrepancy:

min _max|z(S;)|.
ze{-1,1}" S;
The additive Chernoff bound and union bound imply that a uniformly random
z € {—1,1}" has maximum discrepancy at most O( nlog(m)). (Exercise 26.1.)

Surprisingly, for the special case m = n, Spencer [Spe85] showed that there exists
a coloring z € {—1,1}" with discrepancy

O(vi).

erasing the logarithmic factor. For m > n the bound becomes

O( nlog(m/n))

However the proof was existential in nature and it remained an open to find such a
coloring efficiently.

In 2010, Bansal [Banl0] discovered an algorithm that achieves discrepancy
O(y/nlog(m/n)); in particular this gives O(y/n) for the symmetric setting m = n.
Subsequent work by Lovett and Meka [LLM12] gave an elegant randomized polynomial

time algorithm achieving the more general bound of O(, /nlog(m/ n)) This second
algorithm is the main topic of this lecture. Formally, we will prove the following.

Theorem 26.1. Given m sets Si,...,S,, over n points, there exists a vector z €

{=1,1}" such that z(S;) < O( nlog(m/n)) for alli. This vector z can be computed
in randomized polynomial time in expectation.

26.2 Reduction to partial coloring

A fractional coloring is defined as a vector x € [—1,1]". The algorithm maintains
a fractional coloring = € [—1, 1]", initially set to x = 0, that meets the discrepancy

bound |z(S;)| < O( nlog(m/n)) for all ¢, at all times. Progress is made by having
the coordinates ; approach the integral extremes {—1,1} over time.
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Let € = 1/n. We say that a coordinate z; is e-tight, or simply tight, if |x;| > 1 —e.
Otherwise we say that x; is free. We say that z is tight if all the coordinates are tight.
If x is tight, then it is easy to see that we can deterministically round x to a proper
coloring in {—1,1}" without significantly increasing the discrepancy. Thus the task is
reduced to computing a tight fractional coloring x.

We break down this task further into partial coloring problems, where the goal is
to obtain a fractional coloring x with good discrepancy and where half the coordinates
are tight. The tight coordinates are then fixed forever, and in the next iteration we
apply the partial coloring procedure to the remaining free coordinates. Each iteration
of partial coloring decreases the number of variables by half. The following lemma
describes the guarantees of a partial coloring subroutine which we describe and analyze
in the following section.

Lemma 26.2. Let Sy,...,S, C[n], and let xy € [—1,1]". Let € > 0 be sufficiently
small. Then there is a randomized algorithm that, in expected polynomial time,
computes a point x € [—1,1|" such that

(i) |x(S;) — xo(S;)] < O<\/nlog m/n) > for all j.

(ii) At least half of the coordinates are tight.

We now explain at a high level how the partial coloring bounds of Lemma 26.2
lead to a tight fractional covering with good discrepancy. Consider the first iteration.
We apply partial-coloring and obtain a vector (! that (a) respects all of our
desired discrepancy bounds and (b) makes at least half the variables tight. For all
tight coordinates i, z{V) is forever fixed. Henceforth we restrict our attention to the
remaining free variables V()| which has half as many variables as before. Consider now
the second iteration. We apply partial-coloring in V), now using (V) (restricted
to Y)) as the initial point z9. Now we obtain a fractional coloring z?) over Y™
where at least half the variables are tight, and where 22 — 2() satisfies the desired
discrepancy bound. This time, though, n is divided by half, which improves the
discrepancy bound::

122(8,) — 20(8))] < o( nlog(m/n) /2).

Continuing in this fashion, we repeatedly color and remove half the free variables.
Each iteration pays a geometrically decreasing cost in the discrepancy, so the overall
discrepancy for each set S; remains O( nlog(m/n)).

Pseuduocode for this iterative algorithm is given in Fig. 26.1. The following lemma
and proof formalizes the high-level argument above.
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iterative-partial-coloring(Sy,...,Smn)
1. Let 2® =0 and y© = 0.
2. Fort=1,2,...:
A. Let VO = {i: ¢y D e (1—¢1+6)}.
B. If V® is empty then return y®*1.

/* Otherwise partially color the loose vertices VU with starting point given by
y=Y restricted to VO, */

C. Let 2 = partial-coloring(S; N VY, ... S, nY®H p®y,
D. Set y{¥ = y{t=V for i ¢ VO and y» = 2V for i € VO,

Figure 26.1: Iteratively applying the partial-coloring procedure to obtain a tight
fractional coloring. See Lemma 26.3.

Lemma 26.3. In expected polynomial time, iterative-partial-coloring returns a
fractional coloring y € [—1,1]" such that:
(a) All coordinates y; are tight.

(b) All sets S; have [y (S;)| < O(y/nlog(m/n))

Proof. Let T be the (random) number of iterations completed by iterative-partial-
coloring; that is, iterative-partial-coloring returns 3.
For each iteration ¢, we have

ly©@ ()] < [9(8; N V) =y (S A VO)| + [y I (S),

hence
T
(S| < D l2W (S VW) — (s N v
t=1

We also have, for each iteration t,

!x(t)(Si N V(t)) _ y(t—l)(Si N V(t))] < O(\/’V(t)\ log(m/]v(t)\)>.

Recall that |[V®| < n /2!, and observe that

%log(m/(n/Zt)) = %log(m/n) + %t < O(lgtlog(m/n)).
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Plugging back in we have

T

1y ™Sy < O( nlog(m/n)) > 197" = O( nlog.g;(m/n))7

t=1
as desired. ]

Now we are prepared to prove Theorem 26.1, modulo the proof of Lemma 26.2
which we prove next.

Let y € [—1,1]™ be as described in Lemma 26.3. Let z € {—1,1}" be the integral
coloring obtained from y by deterministically setting z; € {—1,+1} to the closer value
to y;. This increases the discrepancy by at most en < 1 for each set S;. This completes
the proof.

26.3 Partial coloring by random walks: proof of Lemma 26.2

The partial coloring algorithm We now describe the algorithm underlying
Lemma 26.2. Let A = ¢y/nlog(m/n) for a sufficiently large constant c. Let

Our goal is to find a fractional coloring x € P where at least half the coordinates are
tight.

We analyze an algorithm that can loosely be described as a high-dimensional
random walk inside . The algorithm starts at 2(®) = z,. Each iteration we move
from 2~V to a random point 2 € P where the step 2 — 2=V is sampled from a
carefully chosen, high-dimensional Gaussian distribution.

As z® moves randomly through P, 2 may approach some of the boundaries of
P. For example, a coordinate x§t) may become tight, or the discrepancy of a set .5;
may approach its limit \;. In this case the walk is constrained to avoid violating these
critical constraints.

Towards a more formal description, let

d = €/ poly(m,n).

& controls average step size of the random walk. Let T'= O(1/6%) = poly(m,n)/e.
The algorithm runs for 7" iterations. We want to show that at termination, z(*) is a
tight coloring in P.
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After t iterations, we say that a coordinate x§t) is tight if ‘xgt)‘ > 1 — € (like before).
We say that a set .S; is tight if

|(S¢,x(t) —z9)| > A —e

The next random step, 2t — () _is restricted to ensure that the tight coordinates
and sets are not further violated, as follows.

Let S® be the subspace orthogonal to all tight sets and coordinates with respect
to z®:

SW = Ly € R": y; = 0 for all tight z;, y(S;) = 0 for all tight S;}.

Note that all the constraints are linear equations, so S® indeed describes a subspace.
The step 2D — 2 is sampled as a Gaussian vector from the subspace S®.

To implement such a sample, let k = dim(S®), let ¢y, ..., c; be an orthonormal
basis for S®, and let U € R™* be the matrix where the ith column is ¢;. Let
g ~ N* be a vector of k independent, normal Gaussian variables. We set

20D = 20 4 570,

Observe that since Ug® € S®_ 2(+1 will have the same relationship with the variables
and sets that were tight with respect to z(; in particular, these tight inequalities will
not get worse.

The following two lemmas help us understand the random vector Ug®.

Lemma 26.4. |[Uwl|]®> = ||w|® for all w € R* and HUTUH2 < ||v|* for all v € R,

Proof. We have

k
Uw = Zwici.
i=1
Since ¢y, ..., ¢ is an orthonormal basis, we have
, k k k k ,
|Uw|” = <Z wz‘Cusz‘Ci> = wiwilei, ) =D w; = |Jw|”.
i=1 i=1 i=1j=1 i=1

For the second claim, observe

Jooff - 30
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To interpret the RHS, extend ¢y, ..., ¢ to an orthonormal basis ¢y, ..., ¢, of R". The
vector y € R™ defined by

v = (ci,v) i=1,...,n

is simply a change of coordinates of = to the new orthonormal basis, so

n

2 2 2
(™ = Tyl = >_{ei,v)™.

i=1
2

Clearly the sum in the RHS is greater than the previous sum for HU TUH [

Lemma 26.5. Let k = dim(S®W). For any vector v, (v,Ug®) ~ N(0,0%) where
o® < lof*.

Proof. Let b= U"v. We have
(0,Ug") = (UTv,g") = (b, g").

As we know, (b, g} is distributed as a Gaussian with mean 0 and variance [|b||”. We
2
have ||b]|* = HUTUH < |Jv||* be Lemma 26.4. O

In particular, Lemma 26.5 implies that for each set 7,
2V (S;) — 2W(S)) = 6(1g,, Ug)
is distributed as a Gaussian with mean 0 and variance at most
§2|S;| < 6%n.

(Here 1g, denotes the {0, 1}-indicator variable for S;.) Lemma 26.5 also implies that
each coordinate j € [n],

(¢ —2); = 6(Uyg);

is distributed as a Gaussian with mean zero and variance at most 2. Now recall that

for a Guassian random variable g with mean zero and variance o2,

P(lg| > Ao] < 27/
for all A. Consequently we have

P[la1(S;) — ) (S)] = ] < e/ = e=pbvimn)
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for each S; and similarly

PngtH) — xg.t)‘ > g} <e” poly(m,n)

for each coordinate j. Meanwhile the quantities are always 0 for tight constraints and
tight coordinates because z(*+1 — () ¢ S,

Taking the union bound over all sets and variables, if (! € P, then with high
probability, we have z(*1) € P. Taking the union bound over all T iterations gives
the following.

Lemma 26.6. With high probability, x® € P for all t € [T).

The remaining task is to show that at least half the variables are tight after T
iterations.

Lemma 26.7. E[|«[*] > 7 E[dim($®)].
Proof. Each iteration t, we have
2@ = V) + 207, 600 gW) 1 62UV gV,
When we take expectations, we have
E[(x(t_l), 5U(t)g(t)>] _ 5E{<(U(t))Tx(t—1)7g(t)>] —0

because <(U(t))T:U(t_1), g(t)> is a mean 0 Gaussian. We also have

E[|U0g0 7] = B[g®]?] = dim(s0-D).
since [|g®||* is the sum of squares of dim(S®) standard Gaussians. Thus

B|2?]? - |2*"V|?] = 6* E[dim($*)].

Unrolling, we have

T
E[[«™)°] > SB[z - |2 )*] > 3 dim(S¢7).
t=1

S

Finally, we observe that dim(S®) > dim(S™) since S® only shrinks over time with

additional tight constraints and variables. O]
# tight coord. 1 # tight sets
Lemma 26.8. E[ W/I‘/t I'(T) > (1 — W)n —E W/I‘/t HE(T) .
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Proof. We first observe that

i tight set tight d.
Bl 2 ) 2 7 (B[ B[ )

We also claim that E{Ha:(T)HQ} < n. If so, then we would have

# tight sets # tight coord.
nz E[meﬂ < 52T<n a E[ w/r/t 20 ] a E{ w/r/t 2T ])’

which is the desired inequality up to rearrangement of terms.
To prove the claim, observe that for all coordinates j, and all iterations ¢, either
the jth coordinate is tight, or

Bl (s)" ~ (x )’

(:v](T))2] < 1 for all j, hence EMI(T)H?} <n. O

’xgt_l)‘ <1-— e] < 6%

It follows that E

# tight sets
w/r/t ()

# tight coord.
w/r/t z(T)

3n

1

v

Lemma 26.9. E[

<%, hence E{

Proof. Fix aset S;. Let u = A\—¢; we again have > ¢yy/nlog(m/n) for an arbitrarily
large constant ¢;. We want to analyze the probability that |2(")(S;) — 2 (S;)| > p.
For t € [T7, let

Yy = a0(8) =270 (8;) = 6Ug".
Observe that
e D(S) —2O(S) =Y, + -+ Yp.

If they Y;’s were independent, then we know the sum behaves like a Guassian with
variance at most T'6%n.

Here the Y,’s are not independent: earlier iterations effect the variance of later
iterations. However, each Y; is a Gaussian conditional on Y7,...,Y;_;. In this case,
one can still show that their sum will still behave as if they were independent; that
is, as a Gaussian with variance at most 70*n. (See Lemma 26.11 in Section 26.A.)
Consequently

c%nlog(m/n) n

2
]_DD/'1 4+ 4 YT > M] < 2@_2;5% < 2e T8 < 3
m
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for a sufficiently large constant c;.
Now, by linearity of expectation, the expected number of tight sets is
# tight sets] . n. o n
{W/r/t 2D | = ;P[Si is tight] < m - 8m 8’

as desired. [

We now complete the proof by showing that at least half the coordinates are tight
with constant probability. The preceding lemma shows that the expected number of
free coordinates is at most n/4. By Markov’s inequality, there are at most n/2 free
coordinates, hence at least n/2 tight coordinates, with probability at least 1/2.

While we have only proven that partial-coloring succeeds with constant prob-
ability. Note that the guarantees of Lemma 26.2 is easy to verify. This leads to
a Las Vegas algorithm with expected polynomial running time that repeats the
partial-coloring algorithm until it succeeds.

26.4 Additional notes and materials

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

26.5 Exercises

Exercise 26.1. Show that a uniformly random coloring of the n points has maximum
discrepancy at most O(x /nlog m) with high probability.

Exercise 26.2. Suppose every set contains at most L elements for some L €
N. Adjust the O( nlog(m/n))—discrepancy algorithm of this chapter to obtain

O(\/L log(m/n) log(n)> in this setting.! Here, rather than repeat the entire analysis
verbatim, explain where L enters the analysis and how it fits in and propagates

through the rest of the proof to obtain the desired bound. (At least one critical
calculation should be redone.)

In particular, show that Lemma 26.2 holds with discrepancy O( Llog(m/n)). The additional

log(n) comes from running partial coloring O(log(n)) times.
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26.A Analyzing Gaussian martingales

The proof of Lemma 26.9 involves analyzing a sequence sum of random variables
where each term, conditional on all previous terms, was distributed as a Gaussian.
There we suggested that the sum behaves similarly as if it were a sum of independent
Gaussians. Here we provide the formal details.

Lemma 26.10. Let X be a Gaussian random variable with mean 0 and variance o2.

Then for all t € R.
E{etx} _ €t202/2‘

Proof. WLOG we may assume o = 1. Let f(x) = e~*"/2 denote the density function
of X. We have

E[etx] :/ ta:f t2/2/f d:):—et /Q/f dx—et2/2

where (a) observes that

1 2 2 €t2/2 2 2 2 2
e f(x) = —etT /2 = e @2 — 2 f (g —¢),

V2r Var

[]

Lemma 26.11. Let Yi,...,Y, € R be random wvariables where for each i € [n],
conditional on Yi,...,Yi_1, Y; is a Gaussian with mean 0 and variance at most o2.

Then
PY, 4+ Y, >\ < e N/,
Proof. Let t € R be a parameter TBD. By exponentiating and taking Markov’s

inequality (as usual), we have

P[Yi+ -+, > A < B[Nt ] = HE[ LY le ™

For each 7, by Lemma 26.10, we have
E{e

.. ,Y;,l} < et /207,
Plugging back in, we have
P[Yi 4+, >\ < t7/20
The RHS is minimized by ¢t = \/no?, which gives
PV, + -+ Y, >\ < e ¥/
as desired. O
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Chapter 27

Randomly Testing Boolean Functions

27.1 Testing boolean formulae with 3 queries, and 8 letter graph CSP’s

A boolean function is a function f : {0,1}" — R that takes as input a sequence of bits
and outputs a single value - often another bit.! Clearly any (deterministic) program
making a binary decision is a boolean function, which makes boolean functions a
natural object of study. Here we explore a testing approach that takes a boolean
function f as a black box, queries f at a limited number of inputs, and analyzes the
outputs to make useful statements about f.

The universality of boolean functions makes them attractive to study. But the
same universality makes it seem rather daunting to be able to obtain concrete and
useful observations about them. Nonetheless today we will see a few interesting things
that one can do, at least approximately, by combination of randomization and an
appropriate change of basis.

Today we will discuss a few introductory topics in property testing, which takes
as input f and tries to decide if f has a certain property. We would only be able
to do so approximately, and differentiate functions that have the property (exactly)
from functions that fail to have the property for a constant fraction of the inputs. For
example, we will show how to approximately test boolean functions for the following
properties.

o Linearity: whether f:{0,1}" — {0, 1} satisfies f(z +y) = f(x) + f(y) for all
x and .

e Dictatorship: whether f : {0,1}" — {—1,1} is of the form f(x) = (—1)% for
some i € [n].

LOf course one can consider functions that output more than one value - but real-valued boolean
functions suffice for the current discussion. In fact this note only really requires boolean functions of
the form f:{0,1}" — {-1,1}.
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The main goal of today’s discussion is to describe the following universal tester
for proof systems.

Theorem 27.1. Let L C {0,1}". Let p = 22". Then there is a randomized algorithm
A {0,1}" x{0,1} — {0,1} that, given oracle access to x € {0,1}" andy € {0,1}",
has the following properties.

(a) Ap makes 3 queries to bits of x ory.
(b) If x € L, then there exists y € {0,1} such that Ar(z,y) =1 always.

(c) If x ¢ L, then for all y € {0,1}", we have

Nz =yl
P[AL(z,y) = 0] > .001 min —

The connection between Theorem 27.1 to boolean functions is not self-evident.
Let us briefly describe the algorithm underlying Theorem 27.1 at a high level, which
will make the connection more clear. Let N = 2", and identify {0,1}" = N. For each
i€ [N], let y; : {0,1}" — {—1,1} be the function defined by

Xi(r) = {

X is called a dictator function and is the topic of Section 27.4. Identifying L C {0,1}"
as a subset of [N], let Dy = {x; : 7 € L}. Note that in general, Boolean functions
f:{0,1}" = {—1,1} can be expressed as (2N = 22n)—dimensional {—1,1}-vectors.
We will create a test that, given z € {0,1}" and y € {0, 1}”, simultaneously tests

(a) If Yy e DL.
(b) Conditional on y € Dy, if y = x, (where we identify x with an index in N).

Thus the theorem reduces to understanding two tests about Boolean functions.
We will build these tools over the course of this note and will finish with the proof of
Theorem 27.1.

To motivate Theorem 27.1, recall that an important ingredient of the PCP theorem
(Chapter 25) was a subroutine that took as input a constant-size boolean function
and output a graph CSP that modeled them in an error-preserving fashion. Let us
now show how to obtain this result using the universal tester above.
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Theorem 27.2. Given a language L C {0,1}", one can construct a graph-CSP
with graph G, = (Vi, Er), alphabet A, and constraints {C, C A% : e € Er} with the
following properties.

1. A={0,1,...,7}.

2. There are n vertices X1,..., X, € Vi that only take labels in {0,1} C A, and
satisfy the following.

o If xy,...,2, € {0,1} is such that (z1,...,x,) € L, then there exists
an assignment o : Vi — {0,1} such that o(X;) = z; for all i and
UNSAT(o |Gp) = 0.

o Ifxy,...,x, €{0,1} is such that (x1,...,x,) & L, then for all assignments
o:Vy, —{0,1} such that o(X;) = x; for all i, we have

UNSAT(o | G1) > .001 min e = ylly
yel n

Proof. Fix a universal tester T for the language L that takes as input z € {0,1}" and
y € {0,1}7, for p = 22", We create a vertex for each of the following.

1. For each i € [n], a vertex X; (modeling the input bit z;).
2. For each i € [p|, a vertex Y; (modeling the proof bit y;).

3. The universal tester T" flips a finite number of coins. For every possible outcome
of coin tosses w, we create a vertex Z,,.

We have an alphabet A = {0, ..., 7} which we identify with {0,1}". For every outcome
of coin tosses w, we create 4 constraints/edges involving Z,, based on the mechanism
of the tester T" when the coin tosses are w.

1. We create a self-loop at Z,, where, given a label

J(Zw) = (JI(ZW)’O-2(ZW)7O-3(ZOJ)) € {07 1}37

we satisfy the constraint iff the following conditions hold. When the coin tosses
of T are w, and the three queries return oy(Z,), 02(Z,), and 03(Z,), the tester
accepts (x,y).

2. For i = 1,2, 3, suppose the ith query of T is to the k;th bit of . Then we create
a constraint between Z, and Xy, that accepts iff 0;(Z,) = o(X},). Similarly, if
instead the ith query is to k;th bit of y, we make the same constraint between
Z,, and Y.
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One can now verify that this graph CSP satisfies the conditions of the statement. In
particular, because the universal tester has a rejection probability that is proportional
to the distance from x to L, the fraction of unsatisfied constraints in any labeling
extending x will be proportional to the distance from x to L. O

Exercise 27.1. Complete the proof of Theorem 27.2 by verifying that the graph-CSP
described above satisfies the claimed properties.

27.2 Fourier analysis of boolean functions

A boolean function is a real-valued function defined over bit-strings of a fixed length;
ie.,

f:{0,1}" = R.

Note that sums of boolean functions and rescaled boolean functions are again boolean
functions. In particular, we can identify the set of all boolean functions with the
2"-dimensional Euclidean vector space R1%1". Here the ith coordinate of the “vector’
f is the value f(i). Rather than the standard Euclidean inner product (z,y) = >, z;y;,
it is more convenient to rescale (-,-) to the following inner product that we denote

<'7'>b:

Y

(Foh ™ oifg) = B [f@)g@)]

x~{0,1}"

where in the RHS z is sampled uniformly from {0,1}". Let

[flly = sy = JEL2(2)]

denote the corresponding norm. This norm rescales the standard FEuclidean norm by
2-"/2_ Here are a couple helpful identities to get us started.

Lemma 27.3. For two boolean functions f,g:{0,1}" — {0,1}, we have
1f = glly = PLf(2) # g()].
Lemma 27.4. For two boolean functions f,g:{0,1}" — {—1,1}, we have
1
PIf(x) # 9(x)] = {1 ~ gl
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Lemma 27.5. For any boolean function f: {0,1}" — {—1,1}, we have || f||; = 1.

We leave the proofs of the above as exercises.

So far we have expressed boolean functions in terms of their “truth tables” as
vectors in R but of course there are many possible bases over R1%!}" that one
could work with. Fourier analysis is based on the following choice of basis. For each
set S C [n], define a boolean function xg : {0,1}" — {—1,1} by

1 it Y ,cqx; is even,

= (—1 Zz gt —
xs(x) = (=1)&e {_1 if Y ,cq®; is odd.

We call yg the Sth Fourier basis function; sometimes Yg is called the parity function
over S. The Fourier basis functions have many convenient properties of which we list
a few. For S = (), we have yyp = 1, the all-one’s vector. For all S, T C [n], we have

XSXT = X(SAT), (27.1)

where SAT = (SUT)\ (SNT) denotes the symmetric difference. We also have, for
all nonempty sets S # (),

[xs(2)] = 0.

E
ze{0,1}"

The above is easy to see for singleton sets S = {i}. For general sets S, letting i € S
and S’ = S — i, we have

E[xs] € Elxs (2)vi(z)] ¥ Elxs (2)] E[xi(z)] £ 0.

Here (a) is by (27.1). (b) is by independence. (c) is applies the singleton case. Finally,
by combining the above observations, we have

1 ifS=T

) (27.2)
0 otherwise

<XSa XT)b = {

for any two sets S, T C [n].
Exercise 27.2. Verify Egs. (27.1) and (27.2) above.

Equation (27.2) means that the functions {xg : S C [n]} form an orthonormal set.
There are also 2" many of them, and we are working in a 2"-dimensional space, so in
fact they form an orthornomal basis (w/r/t (-, -),). Linear algebra then dictates that
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any boolean function f : {0,1}" — R can be written uniquely as a linear combination
of the Fourier basis functions {xgs : S C [n]}, and this representation is given by

f=> (fixshxs= > Elf(x)xs(®)]xs

SCln] SCln]

Let f : 2" — R denote the coordinates in this basis; i.e., fg = (f, xs),, for each set
S C [n|. The map f — f is unitary with respect to the norms (-,-), and (-, -); that is,
a rotation that preserves distances. For any boolean functions f, ¢ : {0,1}" — {0,1}
we have

P(f(z) #9@)] = (f—g.f—ah={[—0.[—0) =] - I,

where (-,-) and ||-|| are the standard Euclidean norm. One should not underestimate
the significance of this transformation. The Fourier transform gives a unitary trans-
formation that maps boolean functions f : {0,1}" — {0,1} into a Euclidean vector
space such that the probability of two functions agreeing is captured exactly by the
norm.

27.3 Linearity
A boolean function f : {0,1}" — {0,1} is said to be linear (mod 2) if
flx+y) = f(x) + fly)

for all z,y € {0,1}", where all additions are made modulo 2. For technical reasons
it is instead convenient to consider functions of the form f: {0,1}" — {—1,1}, and
define such a function to be linear if

flz+y) = flx)f(y)

for all z,y € {0,1}". Of course, by mapping 0 to 1 and 1 to —1, we can easily
convert one type of linear function to the other. Note that the Fourier basis functions
Xs : {0,1}" — {—1,1} are linear functions in the sense immediately above.

27.3.1 Testing linearity

Our goal is to devise an algorithm that, given a boolean function f : {0,1}" — {—1, 1},
decides if f is a linear function. Of course we can query f everywhere but we would
prefer to test f with only a few queries. We point out that a deterministic and exact
algorithm is impossible with only a few queries, but still we will be able to show some
interesting approximate and randomized guarantees.

The following simple procedure is maybe the most obvious one to try.
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1. Draw z,y € {0,1}" independently and uniformly at random.
2. Evaluate f(x), f(y), and f(z +y).
3. Accept fif f(z+y) = f(z)f(y)
This algorithm was analyzed by [BLR93b|, who proved the following.
Theorem 27.6. Let f: {0,1}" — {—1,1}. Then

P (@) f(y) # f(z +y)] = min P[f(2) # xs()]

$7y
where x,y € {0,1}" are distributed uniformly and independently over {0,1}".

Proof. For ease of notation, let P = P.y[f(z)f(y) = f(z +y)]. Let Z € {0, 1} be the
indicator variable for the event that f(z +y) = f(z)f(y). We have P = E[Z]. We
also have

2= 1= (@) - @ +y))
21— 2~ 2/ @) +))
= L+ F@ )+ ),
where (a) observes that f*(x) = f*(y) = f*(z +y) = 1. Thus
P=ElZ]= 4 LB[r@ Bl s 0] = L+ Lo, 2 Lo LR,

where we define h(x) = Ey[f(y)f(z +y)]. (b) applies the Fourier transform. We
claim that hg = f2 for all S. Indeed, we have

E[n(z)xs(x)] = E[f(9) (@ +y)xs@)] 2 E[f () f(x +y)xs)xs(z + y)]

z,y T,y

= E[f()xs)] Elf (x +y)xs(@ +y)] = (fxs) =[5

(c) is by linearity of xg. (d) observes that y and = +y are independently and uniformly
distributed in {0,1}". Plugging back in, we now have

1 1 @1 1 A
P = — — 3 < — _
ptal k=g +gmpxls
(e) applies the fact that ||f||* = 1 for f:{0,1} — {—1,1}. Rearranging, we have

fs>2P -1
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for some set S C [n]. But then
AP[f(x) # xs) = If = xslly = I, + Ixslly = 2(f, xs) =2 = 2fs <4(1 - P),

as desired. O
If f is linear, then the linearity test succeeds one hundred percent of the time. But

then the above theorem asserts there exists a basis function yg that agrees with f
one hundred percent of the time. That is:

Corollary 27.7. All linear functions f : {0,1}" — {—1,1} are of the form xs for
some set S.

27.3.2 Locally correcting for linearity

Now suppose f:{0,1} — {—1,1} is e-close to a basis function xg for an unknown
set S. That is, f(x) = xs(z) for (1 — €)-fraction of choices of x.

Can we recover S from f? The following theorem gives a randomized algorithm
that uses f to simulate xg(z) for any x, even when f(x) # ys(x).

Theorem 27.8. Let f:{0,1} — {—1,1} be e-close to a basis function xs: {0,1} —
{=1,1}. Given x € {0,1}", consider the random value f(z)f(x +y) € {—1,1} where
y € {0,1}" is sampled uniformly at random. Then

Plf(y)f(z +y) = xs(x)] = 1 - 2e

Proof. x + y and y are both distributed uniformly over {0,1}", and we have f(y) =
xs(y) and f(z +y) = xs(z +y) each with probability of error < e. By the union
bound, both occur with probability of error < 2e. But then we recover xg(z) =

Xs(@ +y)xs(y). [

27.3.3 A remark on convolutions

A key component of the proof of Theorem 27.6 is the identity hg = j;? for the function
h(z) = Ey[f(y)f(x + y)]. More generally, for two boolean formulas f,¢: {0,1} — R,
the convolution of f and g, denoted f * g, is the function defined by

(f *9)(x) = Elf (z)g(x +y)].

The following identity is called Plancheral’s identity and generalizes the calculations
used in Theorem 27.6.

Lemma 27.9. Let f,g:{0,1} — R. Then (f/*\g)s = fsds for all S C [n].

Exercise 27.3. Prove Lemma 27.9.
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27.4 Dictators

A function f : {0,1}" — {=1,1} is a dictator if it is one of the singleton basis
functions?,

f = x; for some i € [n].

We want to test if a function f : {0,1}" — {—1,1} is a dictator. We do so by
combining two tests. First, clearly, any dictator function is linear, which gives our
first test.

1. Linearity test: Sample z,y € {0,1}" independently and reject if f(z+y) #
f(@)f(y).

The second test is new. Let Q = {0,1}*\ {(0,0,0),(1,1,1)} be the set of triplets
where not all coordinates are equal. Abusing notation, we write Q" to denote the
triplets of vectors x,y,z € {0,1}" such that for all i, (x;,v;,2;) € Q. To sample
a uniformly random (z,y,2) € 0, one can independently sample, for each i € [n],
three coordinates (z;,y;, z;) € Q uniformly at random. We write (z,y, z) ~ Q" when
(z,y,2) € Q" is sampled uniformly at random.

For any dictator function f = y;, and (x,y, z) € Q", we have (f(x), f(y), f(2)) € Q.
This motivates our second test:

2. Not-all-equal (NAE) test: Sample z,y,z ~ Q". Reject [ unless

(f(z), f(y), [(2)) € Q.

Theorem 27.10. Let f:{0,1}" — {—1,1} be a boolean function. Suppose [ passes
both the linearity and not-all-equals test with probability 1 — € for e < .1. Then there
exists a coordinate i € [n] such that

Plf(z) # xi(z)] < €
where x € {0,1}" is sampled uniformly at random.

To prove Theorem 27.10, we first require the following lemma analyzing the
not-all-equal test.

Lemma 27.11. Let f:{0,1}" — {—1,1}. Let (z,v, Q". Then

P[(f(x), f(y), f(2)) € S

2For ease of notation, we write y; instead of X{i}-

z) ~
L2
Ty
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We will prove this lemma below in Section 27.4.3. First, let us use it to prove
Theorem 27.10.

Proof of Theorem 27.10. By the NAE test, we have >, ﬁQ > 1—4.5¢. By the linearity
test, we have that fg > 1 — 2¢ for some S. But this set S must be a singleton {i}
because otherwise we have
1=|fI?>1—45e+ (1—2¢)°>1,
a contradiction. Thus ﬁ > 1 — 2¢ for some 7. Then
AP[f(x) # @] 21 f = xillh = 1F = Xil? 2 (i = 1)* +1— 2 =2 - 2f; < 4e,

as desired. (a) is by Lemma 27.4. (b) takes the Fourier transform. (c) uses the
identity || f]|* =1 for all f:{0,1}" — {—1,1}. O

The dictatorship test we have just developed requires 6 queries to f: three for
the linearity test, and three for the not-all-equals test. We can reduce this to three
queries at the cost of increase the error rate with a simple trick, as follows.

Theorem 27.12. Let n € N. There is a 3-query test for the family of dictators D =
{xi|i € [n]} with the following guarantee. Given a function f:{0,1}" — {—1,1}:
1. If f € D, then the test always accepts f.
2. If f is e-far from any dictator function and e < .2, then the test f with probability
> e/4.

Proof. We choose either the linearity test or not-all-equals test, randomly selecting
one of the two with equal probability. Clearly, if f is a dictator, then the test always
passes. Otherwise, suppose f fails the test with probability < p. Consider the test
where we run both tests on f; f fails this test with probability < 2p. It follows that
for p < .05, f is at most 4p-far from some dictator. O

27.4.1 Families of dictators

We can extend the dictator test above to subfamilies of dictator functions as follows.
For any set S C [n], let

Ds={xi:{0,1}" = {-1,1}[i € S}

be the set of dictator functions for coordinates i € S. Suppose that given f : {0,1}" —
R and S C [n], we want to test if f is close to any dictator function in S. Consider
the following.
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1. With probability 1/2, run the dictatorship test from Theorem 27.10.

2. With probability 1/2, run the locally correcting protocol for linear functions for
f with input string 1g, accepting f if this protocol returns 1.

This test has the following bounds.

Theorem 27.13. Given S C [n], there is a 3-query test for the subfamily of dictators
Dgs with the following guarantee. Given a function f:{0,1}" — {—1,1}:

1. If f € Dg, then the test always accepts f.

2. If f is e-far from any function in Dg, then the test rejects f with probablity > ce
for some universal constant ¢ > 0.

Proof. The first property is immediate. Suppose f ¢ Dg and fails the test with
probability p. Then f fails either test with probability < 2p. The first test implies
that f is (¢p)-far from a dictator for some universal constant ¢ > 0. Because f is
(cp)-far from a dictator x; and in particular from a linear function, the correction
protocol returns x;(1lg) with probability of error < dep for a universal constant d > 0.
Since f passes that test with probability 2p, we conclude that f is O(p) close to x;
for some i € ;. ]

27.4.2 Noisy perturbation of boolean functions

It remains to analyze the not-all-equal test. Doing so requires analyzing boolean
functions under random perturbations of their input, as follows.

For x € {0,1}" and p € [0, 1], let N,(z) be the distribution of random strings
where each bit x; is flipped independently with probability p. The random function
N, arose previously in the analysis of error correcting codes. For a boolean function
f:{0,1}" = R, we define the boolean function T, f : {0,1}" — R by

T, 0)@) = E_ (o)

—

Lemma 27.14. Let f : {0,1} — R be a boolean function. For S C [n], (T, f)s =
(1— 2p)|5|fs-

Proof. Since T, and taking the Fourier transform are both linear functions, it suffices
to prove the claim for f = xyg. We have

(Tyxs)@) = B [xs]=]1[ E [(=1"]=][(1-p)(-1)" —p(-1)")

yNNP(x) iES yNNP(x) iES

=TI - 2p)(-1)™ = (1 — 2p)"'xs(),

€S
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as desired. O

27.4.3 Analysis of the not-all-equals test
Finally, let us analyze the not-all-equals test and prove Lemma 27.11.

Lemma 27.11. Let f:{0,1}" — {—1,1}. Let (z,y,2) ~ Q™. Then

IWﬂ@j@J@»emgg

Proof. Let P = P[(f(z), f(y), f(2)) € Q]. Define a boolean function NAE
{—1,1}® — {0,1} by setting

0 ifa=b=c,
NAE(a,b,¢) = {1 otherwise.
We have
NAE(a,b,c) = é((a —b)2+(a—c)?+(b— 0)2)
;( a® + 2% + 267 — 2ab—2ac—260)
3 1
=~ i(abJr ac + be).
Thus
P = BINAB(/ (), /(). f()] = & = BU@)f(0) + F) () + J() ()
2 2= Bl f()

where (a) is by symmetry of Q. Consider E[f(z)f(y)]. We have

BU@IW Y E @)= (£ T l), 2 (Tos )

907y~N2/3(I)
SOOI S I
i 1S|>3
|S| odd
g_;zﬂ (1—2]“) —*—*Zfz
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Here (b) observes that x is sampled uniformly from {0,1}", and conditional on =,
y is distributed as Ny/3(z). (c) applies the unitary Fourier transform. (d) is by

Lemma 27.14. (e) is because g f2 = || f||* = 1. Plugging back in, we have
1 8 A 7T 2 N
P<Z _-Z|——— — 2) = -4+ = 2
SEREIG R 230 R
as desired. O

27.5 Universal Tester

We have arrived at the final section of this note, where we use our newly developed
toolkit for analyzing Boolean function to analyze the universal tester introduced in
Section 27.1. We restate the claim for the reader’s convenience.

Theorem 27.1. Let L C {0,1}". Let p = 22". Then there is a randomized algorithm
Ap {0,1}" x {0,1} — {0,1} that, given oracle access to x € {0,1}" and y € {0,1}",
has the following properties.

(a) A makes 3 queries to bits of x ory.
(b) If x € L, then there exists y € {0,1} such that Ar(z,y) =1 always.
(c) If & L, then for all y € {0,1}", we have

Nz =yl
P[AL(z,y) = 0] > .001 min ——

Proof. We identify the input space {0, 1}" with the family of all integers [N] where
N = 2" and the language L as a subset of indices from [N]. The proof space {0,1}",
where p = 2V, consists of the family of all boolean functions f : {0,1}" — {—1,1}.
A 1-bit query to a function f evaluates f(x) for a bit string 2 € {0,1}".

For i € L, the proof that ¢ € L is the dictator function y;. We need to create a
randomized algorithm Ay (i, f) such that:

(a) A makes at most 3 queries to i or f.
(b) If i € L, there AL (i, x;) = true always.
(c) Ifi ¢ L, then for all f:{0,1}" — {-1,1},

P[AL(i, f) = false] > .001 min M

JEL n
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Our protocol will consist of two sets.
1. We test that f = x; for some j € L, using the test from Theorem 27.13.
2. Given that f = x; for some j € L, we test if i = j.

For the first test, we recall the guarantees from Theorem 27.13. The test takes 3
queries. If f = x; for some j € L, it always accepts f. Otherwise, if f is e-far from L,
then it rejects 7 with probability Ce for some universal constant C; > 0.

The second step is based on the correction protocol from Section 27.3.2. Suppose
f =~ x; for some j € L. We need to determine if i = j, rejecting with probability
proportional to their Hamming distance as bit-strings.

Ideally we could sample an index 7 € [n] and accept iff i; = j,. The catch is that
we don’t know j. However, we can still (approximately) query x; via f and the linear
correction protocol.

To build some intuition, suppose f = x; (but we don’t know j). For fixed 7, we
need an input z € {0,1}" such that

f(@) = x;(x) = jz
for all 7. Then we could compare f(z) to i,. To this end, define z € {0,1}" by
T = k)T

for all k& € [N], where k. refers to the 7th bit of k. Then x;(z) = j, for all j.

Suppose ¢ € L. Let f = x;. Then f passes the first test, since f € Dy. Then it
passes the next test, since for any fixed 7, f(z) = x;(x) = i,.

Now suppose ¢ ¢ L, and has Hamming distance € from any j € L. The proof f is
either e-far from any dictator in Dy, or e-close to some dictator in Dy,.

If f is e-far from any dictator in Dy, then the first test rejects f is probability
Q(e).

Otherwise f is e-close to x; for some j € L. The second test samples a uniformly
random index 7 € [n]. Since j € L, j is e-far from 4, so j, # i, with probability e.
Let 2 € {0,1}" be the test input described above for this choice of 7. The linear
correction protocol outputs

X; () = jr

with probability 1 — 2e. So with probability €(1 — 2¢), the second test fails.
So in either case, we reject (i, f) with probability (e). O

365



27. Randomly Testing Boolean Functions Kent Quanrud
27.6. Additional notes and materials Fall 2025

27.6 Additional notes and materials

This chapter is motivated by the PCP theorem and limited in scope to the techniques
that lead to the universal tester. There are many other applications of property testing
and Boolean analysis. See [ODo14] for a booklength treatment on these topics. These
notes are based on chapters 1, 2, and 7 of [ODol4]. Property testing also extends
beyond boolean functions. We recommend Prof. Grigorescu’s Spring 2021 class on
sublinear time algorithms for more topics in this area.

Fall 2022 lecture materials. Click on the links below for the following files:
e Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

27.7 Exercises

Exercise 27.1. Complete the proof of Theorem 27.2 by verifying that the graph-CSP
described above satisfies the claimed properties.

Exercise 27.2. Verify Eqgs. (27.1) and (27.2) on page 356.

Exercise 27.3. Prove Lemma 27.9.
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Chapter 28

Sparsification

Generally speaking, sparsfication refers to the idea of taking one complex object and
replacing it with a smaller and simpler one that preserves certain salient properties.
For example, geometric e-samples replace arbitrarily large point sets with small,
reweighted point sets while approximately preserving the measure of every range.
This chapter introduces two more examples of sparsification. The first is graph
sparsification, where we reduce the number of edges in an undirected graph while ap-
proximately preserving all cuts. The second is matrix sparsification, where we sparsify
sums of positive semi-definite matrices while preserving all of its spectral properties.
The latter generalizes the former via the Laplacian. Due to time constraints we will
not prove the sparsification results, but instead focus on some of their applications.

28.1 Graph sparsification

Let G = (V, E) be an undirected graph with m

Theorem 28.1 ([BK15]). Let G = (V, E) be an undirected graph, m edges, n vertices,
and positive edge weights w : E'— Rsq. Then there exists a subgraph G = (V, E’)
(where E' C E) and weights W : E' — Rsq such that:

(a) G has ’E‘ < O(nlog(n)/eQ) edges.
(b)

preserves the weight of all cuts of G up to a (1 + €)-factor. That is, for all S C V,
(1 —€e)w(5(5)) <w(d(5)) < (14 €)w(4(S5))

Moreover, (G, W)
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Due to time constraints we will note prove Theorem 28.1. Instead we will show
something weaker that still sheds some insight into Theorem 28.1: we will compute a
sparse reweighted subgraph where the minimum cut is preserved up to a (1 £ €)-factor.

Let A denote the weight of the minimum cut in G. Let 7 = cfj’\n for a sufficiently

large constant ¢ > 0. Consider the randomized weights w where for each edge e € E,
independently, we have

w(e)

N with probability p, & “© _ LW(G)J
w(e) =T w(e) ' N =
{T J with probability 1 — p,.

Equivalently, w(e) is defined by

w(e) € ﬂw@Jﬁ P@WT} and Efw(e)] = w(e).

T T

Consider a cut §(5), where S C V. The randomized weight of 6(5),
w(3(5)) = > dle),
e€d(S)

is a sum in independent random variables where the random part of each random
variable varies by at most 7. The expected value is

E[@(0(5))] = w(4(5)).

Since 7 < (€2 /clogn)w(d(S)) for a large constant ¢, by the multiplicative Chernoff
bound, we have

[@(5(5)) = w(d(5))] < ew(d(5))
with high probability.
In particular, if 6(S) is the minimum cut, then w(5(S)) < (1 + €)A with high
probability. Thus the minimum cut with respect to @ is at most (1 + €)A w/h/p.

Next we want to show that the minimum weight is at least (1 — e)A with high
probability. Call a cut 6(5) bad if

W(6(S)) < (1 =€),

and good otherwise. While any individual cut is good w/h/p, we cannot simply take
a union bound over all cuts because they are exponentially many cuts.

Recall that there are at most (g) minimum cuts in the graph (Chapter 4). An
extension of the same argument shows that there are at most n? cuts of weight at
most tA, for all t € N (exercise C.22).

Now, for t € N, let @); be the family of edge cuts with weight in the range
[tA, (t+1)N)...
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28.2 Spectral sparsification

Recall that a matrix A is positive semi-definite (PSD) if it is symmetric ((z, Ay) =
(y, Azy) for all z,y) and (z, Ax) > 0 for all x. For example, the Laplacian L. of an
edge e = {u, v}, Defined by (z, L.z) = (z, — x,,)* for € RV, is positive semi-definite.
So is the Laplacian L = Y .. w(e) L, of an undirected graph G = (V, E') with edge
weights w € RE.

Let A, B be two PSD matrices. We write

A = Bif (z, Az) < (x, Bz) for all z € RV.

= defines a partial order on the family of PSD matrices (over a fixed vector space).
We say that B is a (1 & ¢)-approximation of A if

(1—-e)B=A=<(1+¢B.

If Bis an (1 4 €)-approximation of A then many properties of B are within a (1 + ¢)-
factor of A. For examples, the eigenvalues of B match those of A up to a (1 £ €)-factor:

Exercise 28.1. Suppose B is an (1 + €)-approximation of A. Prove that for all 4, if
fta,; is the ith largest eigenvalue of A, and pp; is the ith largest eigenvalue of B, then

(1= €upi < pai < (L+€)up,

Let A=321"; B; be a sum of m PSD matrices. We are interested in computing a
sparse sum A = Y7, w;B;, where w; > 0 for all 7, such that

(a) (1-eA=<A=<(1+e)A.
(b) w; > 0 for as few indices i as possible.

Such an A would be useful as it could replace A in many applications with small loss,
while being easier to compute with because it is smaller.

The matrix Chernoff bound

Theorem 28.2 (Matrix Chernoff bounds). Let € € (0,1) and let ¢ > 0 be suffi-
ciently large. Let o = €*/clog(n) for ¢ > 0 sufficiently large. Let Xi,..., X, be

independent and randomized positive semidefinite matrices with X; < ol for all i, and
EX,+ -+ X,]=1. Then

P(l-el 2 X1+ +X, 2 (1+e)I]>1—n%),
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The proofs of the matrix Chernoff bounds require technical tools beyond the scope
of our course. Still let us try to offer some intuition.

Let u € R™ be any unit vector. Consider the terms (u, X;u), which (in a sense)
project X; onto the direction u. The assumptions of the matrix Chernoff bound state
that

62

0 < (u, Xju) <

clogn

Bl (u (X3 )o)| = B[St x| -1

If we apply the standard Chernoff bound to the independent random variables
Y = (u, Xyu), we get

for all 7, and that

n
1—€§Z<U,XiU> <1l+e€
i=1
with probability at least 1 — n=%(),

Thus in any single direction, the random sum Y, X; is well concentrated. The
strength of the matrix Chernoff bound is the assertion that the random sum Y, X is
simultaneously well-concentrated in all directions. This is much stronger than can be
obtained by a union bounded argument over all directions...

Sparsifying sums.

Fall 2022 lecture materials. Click on the links below for the following files:
o Handwritten notes prepared before the lecture.
o Handwritten notes annotated during the presentation.
e Recorded video lecture.

28.3 Exercises

Exercise 28.1. Suppose B is an (1 + €)-approximation of A. Prove that for all 4, if
fta,; is the ith largest eigenvalue of A, and pp; is the ith largest eigenvalue of B, then

(1—epp; < pai < (1+€)up,.
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Homework assignments
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ETERNAL .
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A. Homework assignments Kent Quanrud

Fall 2025

Homework 0

Due 11:59PM on Thursday, September 4.

Your self-graded version is due exactly one week later. See page 447 for (fairly
detailed) instructions.

Solutions are posted both in Chapter B and on Piazza.

Please be aware of Section D.5 (in the syllabus) regarding homework policies.
Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

We recommend exercises C.26—C.48 as warmup exercises, especially if probability
theory is new for you.

1.
2.

3.

Exercise C.35.
Exercise C.31.

Exercise C.19.
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A. Homework assignments Kent Quanrud
Fall 2025

Homework 1

e Due 11:59PM on Thursday, September 18.

o Your self-graded version is due exactly one week later. See page 447 for (fairly
detailed) instructions.

e Solutions are posted both in Chapter B and on Piazza.

o Please be aware of Section D.5 (in the syllabus) regarding homework policies.

o Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

The lecture on heavy hitters raised a question about uniform sampling from
streams. See exercise 2.5 to learn more.

1. Exercise 2.2

2. Exercise 2.4 (I think this one is the trickiest.)
3. Exercise 2.6

4. Exercise C.63

5. Exercise C.4
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Fall 2025

Homework 2

e Due 11:59PM on Thursday, October 2.

o Your self-graded version is due exactly one week later. See page 447 for (fairly
detailed) instructions.

e Solutions are posted both in Chapter B and on Piazza.

o Please be aware of Section D.5 (in the syllabus) regarding homework policies.

o Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

1. Exercise C.14
2. Exercise C.64
3. Exercise C.45 (I think this one is the trickiest.)
4. Exercise C.66
5. Exercise C.9

6. Optional challenge (just for fun): Exercise C.17
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A. Homework assignments Kent Quanrud
Fall 2025

Homework 3

e Due 11:59PM on Thursday, October 16.

o Your self-graded version is due exactly two weeks later (for this homework only,
on account of the midterm). See page 447 for (fairly detailed) instructions.

e Solutions are posted both in Chapter B and on Piazza.

o Please be aware of Section D.5 (in the syllabus) regarding homework policies.

o Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

1. Exercise C.12
2. Exercise C.8
3. Exercise C.20
4. Exercise C.21

5. Exercise C.57
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Fall 2025

Homework 4

o These problems are only tentative until this disclaimer is removed.

e Due 11:59PM on Thursday, November 6.

» Your self-graded version is due exactly one week later. See page 447 for (fairly
detailed) instructions.

e Solutions are posted both in Chapter B and on Piazza.

o Please be aware of Section D.5 (in the syllabus) regarding homework policies.

o Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

1. Exercise C.53
2. Exercise C.65
3. Exercise C.41

4. Exercise C.30
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A. Homework assignments Kent Quanrud
Fall 2025

Homework 5

o These problems are only tentative until this disclaimer is removed.

e Due 11:59PM on Thursday, November 20.

» Your self-graded version is due exactly one week later. See page 447 for (fairly
detailed) instructions.

e Solutions are posted both in Chapter B and on Piazza.

o Please be aware of Section D.5 (in the syllabus) regarding homework policies.

o Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

1. Exercise 16.1
2. Exercise 17.1
3. Exercise 18.2

4. Exercise 19.2

390



A. Homework assignments Kent Quanrud
Fall 2025

Homework 6

o These problems are only tentative until this disclaimer is removed.

e Due 11:59PM on Thursday, December 4.

» Your self-graded version is due exactly one week later. See page 447 for (fairly
detailed) instructions.

e Solutions are posted both in Chapter B and on Piazza.

o Please be aware of Section D.5 (in the syllabus) regarding homework policies.

o Before submitting, we encourage you to ask yourself, Is this really the simplest
way to solve the problem? Is this really the clearest way to explain the solution?

1. Exercise 20.2
2. Exercise 21.7
3. Exercise 22.1
4. Exercise 23.6

5. Problem 4.8 in [Vad12]. (I think this one is the trickiest.)
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Appendix B

Selected solutions

B.1 Homework 0

Exercise C.35. Suppose you repeatedly flip a coin that is heads with fixed probability
p € (0,1).

1. What is the expected number of coin flips until you obtain one heads?' Prove your

answer. 2

2. What is the expected number of coin flips until you obtain two heads? Prove your
answer.

3. For general k € N, what is the expected number of coin tosses until you obtain k
heads? Prove your answer.

Solution to exercise C.35.

1. Let X € N be the random variable reflecting the number of flips until heads.

Observe that, if the first coin toss is tails, then we are again flipping coins until we
get heads. Consequently

E[X |first coin is tails] = 1 + E[X].
Therefore

E[X] = pE[X |first coin is heads] + (1 — p) E[X | first coin is tails]
=p+ (1 —p)(1+E[X])
=1+ (1 -pE[X].

If the first toss is heads, that counts as one coin flip. If the first toss is tails and the second toss
is heads, that counts as two coin tosses. Etc. It may be helpful to first think about a fair coin, where

p=1/2.
2Hint: There is an easy way and a hard way to solve this problem.
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This is solved by

Painful approach. The explicit expected value formula gives

E[X] = iiP[X =il=> ip(l—p)"
=1

i=1
To evaluate this sum (carefully), we have

> . i—1 . = d Q
Y ip(l—p) =t =lim p> — —(1—-p)
=1

n—00 = dp

n

. d ;
R S

d1l—= (1= n+1
TR el Gt il
n—00 dp P
1— Ny _ _ n+1
~ lim _pn( p)"p (12 (1—p)" )
n—oo p
B 1
p

2. (See part 3 below.)

3. Let X; be the number of flips between the (i — 1)th heads and the ith heads. Then
X1+ -+ X} is the total number of flips until £ heads. We have

E[X1+"'+Xk]:E[X1]+"'+E[Xk]:];.
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Rubric. For this and other problems, there may be other approaches
to the problems that aren’t covered by the rubric. In general, if the
solution is correct and adequately proven, it gets full credit. For
partial credit, we try our best to be fair in a way that is consistent
with the breakdowns below.

5 pts. Part 1.

¢ Nice approach.

1 pt. Observing that after first tails, the rest repeats the
same experiment.

1 pt. Break down E[X] w/ conditional probabilities.

1 pt. Solve recursive equation

2 pts. Get 1/p.

o Painful approach.

1.5 pts. Explicitly modeling the expected value.

.5 pts. Either justify interchanging the derivative with
the infinite sum, or explicitly state the limit and
interchagne with the inner finite sum.

1 pt. Apply geometric sum formula.

2 pts. Get 1/p.

3 pts. Part 2.
1 pt. Modeling with one X; for each heads.
1 pt. Applying linearity of expectation.
1 pt. Getting 2/p.

2 pts. Part 3.
2/3 pts. Modeling with one X; for each heads.
2/3 pts. Applying linearity of expectation.
2/3 pts. Getting k/p.

Exercise C.31. Please see the Piazza post for the solution and rubric to Exercise C.31.

Exercise C.19. This exercise is about a simple randomized algorithm for verifying matrix
multiplication. Suppose we have three n x n matrices A, B,C. We want to verify if
AB = C. Of course one could compute the product AB and compare it entrywise to C.
But multiplying matrices is slow: the straightforward approach takes O(n3) time and there
are (more theoretical) algorithms with running time roughly O(n2'37"'). We want to test if
AB = C in closer to n? time.

The algorithm we analyze is very simple. Select a point x € {0, 1}" uniformly at random.
(That is, each z; € {0,1} is an independently sampled bit.) Compute A(Bx) and Cz, and
compare their entries. (Note that it is much faster to compute A(Bz) than AB.) If they are
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unequal, then certainly AB # C and we output false. Otherwise we output true. Note
that the algorithm is always correct if AB = C', but could be wrong when AB # C. We
will show that if AB # C| the algorithm is correct with probability at last 1/2.

1. Let y € R™ be a fixed nonzero vector and let z € {0,1}" be drawn uniformly at
random. Show that (z,y) & S, 2;y; # 0 with probability at least 1/2.

2. Use the preceding result to show that if AB # C, then with probability at least 1/2,
ABzx # Cz.*

3. Suppose we want to decrease our probability of error to (say) 1/n?. Based on the
algorithm above, design and analyze a fast randomized algorithm with the following
guarantees.

o If AB = (| then it always reports that AB = C.
o If AB # C, then with probability of error at most 1/n?, it reports that AB # C.

(Your analysis should include the running time as well.)

Solution to exercise C.19.

1. Let y; be the last nonzero coefficient of y. Let o = Zf;ll x;y; be the partial sum over
the first k£ — 1 coordinates, and consider the probability of (z,y) = 0 conditional on .
If « =0, then (x,y) #0if z;, = 1. If a« # 0, then (z,y) # 0 if x = 0. Thus

P[(z,y) # 0] = P[{z,y) # 0[a = 0] Pla = 0] + P[(z,y) # 0] a = 1] P[a = 1]
> Plxy = ]P[a—O]—I—P[xk:O]P[a:l}
r>5Pla=0+ Pla=1=,

as desired.

2. If AB # C, then there is some row i such that the ith row of AB does not equal the
ith row of C. Recall that (ABz); and (Cx); are the inner product of x with the ith

row of AB and C, respectively. By the previous part, with probability at least 1/2,
(ABzx); # (Cx); (in which case ABx # Cx).

3Hint: Suppose for simplicity that the last coordinate of y is nonzero. It might help to imagine
sampling the first n — 1 bits and computing the partial sum S,_1 = Z?:_ll x;y; first, before sampling
Zn and adding x,y,. Formally your analysis may involve some conditional probabilities. (And what
about the case where y, =07%)

4Even if you haven’t solved part 1 you may assume it to be true.
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3. We repeat the algorithm from part 2 O(logn) times, answering that AB = C' iff
ABx = Cz for each randomly sampled z. If AB = C, then ABx = Cz for all x and
we correctly respond that AB = C. If AB # C, then for each x, we have ABx = Cx
with probability at most 1/2. The probability that ABx = Cx for all n trials is
therefore 1/ poly(n). The total running time is O(n?), since it takes O(n?) time to
compute ABz and Cz, and we rerun the algorithm O(logn) times.

Rubric.
4 pts. Part 1.
1 pts. Generalizing from the special case where the last coeffi-
cient is nonzero by focus on the last nonzero coefficient.
1.5 pts. Analysis conditioning on when the previous sum is
Zero.
1.5 pts. Analysis conditioning on previous sum is nonzero.
3 pts. Part 2.
1.5 pts. Recognizing that if A # BC, at least one row of the
difference is a nonzero vector.
1.5 pts. Correctly applying part 1 to this row.
3 pts. Part 3.
1 pt. Repeating the algorithm O(logn) times.
1 pt. Accept iff all independent trials accept.
.5 pts. Show that probability of error becomes 1/ poly(n).
.5 pts. Analyze the running time.
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B.2 Homework 1

Exercise 2.2. Show that the construction given in Section 2.2 is indeed a universal hash
function, using the steps listed below.

To recall the construction, we randomly construct a function h : [n] — [k] as follows.
First, let p be any prime number > n. Draw a € {1,...,p — 1} uniformly at random, and
draw b € {0,...,p — 1} uniformly at random. We define a function h(x) by

h(z) = ((az +b) mod p) mod k.

1. Let z1, 29 € [n] with 21 # 9, and let ¢1,c9 € {0,...,p — 1} with ¢; # c2. Show that
the system of equations

ari+b=c modp
axro +b=co modp
uniquely determines a € {1,...,p — 1} and b € {0,...,p—1}.°

e Step 1 implies that the map (a,b) — (ax1 +b mod p,azxs +b mod p) is a bijection
between {1,...,p—1} x {0,...,p— 1} and {(c1,¢2) € {0,...,p— 1} : c1 # c2}.

2. Let 1,9 € [n] with z1 # x2, and let ¢1,¢9 € {0,...,p — 1} with ¢; # ca2. Show that
1
plp—1)

(Here the randomness is over the uniformly random choices of a and b.)

Plaxy +b=c; mod p, axg +b=cy mod p| =

3. Fix x1,x9 € [n] with z1 # 29, and ¢; € {0,...,p — 1}. Show that

Z Plazy +b=c¢; mod p, ars +b=cy mod p|] <

026{17-"7]3}
ca2#c1 mod p
c1=cy mod k

1
pk’

e The LHS represents Plax; +b = ¢; mod p and h(zz2) = h(z1)].7

4. Finally, show that P[h(z1) = h(z2)] < +.

Solution to exercise 2.2.

5Here it is helpful to know that division is well-defined on the set of integers modullo p when p is
prime. More precisely, “a/b” is defined as the unique integer ¢ such that bc = a.

6Here we note that for z, # 2, azrq +b = axs + by mod p iff a = 0.

"Hint: You may want to show that the number of values ¢y € [p] such that ¢; = co mod k is

< ezl
— n -
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1. Subtracting one equation from the other, we have
a(xy —x2) =c1 —c2 mod p.

Dividing by 1 — 2 (which is nonzero) we have

C1 —C2

r1— Ty
Now b is determined as b = ¢; — ax.

2. By part 1, there is a unique choice of a € {1,...,p— 1} and b € {0,...,p — 1} such that
ax1+b=c1 mod x and axs +b = co mod p. The probability of sampling these particular
values of a and b is 1/p(p — 1).

3. We first observe that the number of values ¢y € [p] such that ¢; = ¢o mod k is at most
(p —1)/k. Indeed, for each interval [(i — 1)k + 1,ik] there is exactly one such value (namely,
(t—1)p+ (c1 mod k)), and [p/k] such intervals cover the range [p]. One of those values is
1, which leaves at most [p/k| —1 < (p — 1)/k values ca € [p] such that ¢; # ¢ and ¢3 = ¢4
mod k.

Now, we have
S Plaz +b od +b odp <Pt 1 !
ary =c1 mod p, axrs =cy mod p| < . = .
ko plp—1) pk

026{17-"71)}
caFcy
c1=co mod k
4. We have
@ 1 1
Plh(z1) = h(z2)] = Y Plazi +b=ci and h(z1) = h(z2)] < > — = —.
c1€lp) acn PP F

Here (a) is by part 3.

Rubric.
3 pts. Part 1
1 pt. Getting the right value for a.
1 pt. Getting the right value for b.
1 pt. Showing the work/algebra to get the right values.
2 pts. Part 2
1 pt. Observing that there’s a unique choice of a and b.
1 pt. Calculate the right probability.
4 pts. Part 3
2 pts. Proving the hint.
2 pts. Using the hint correctly.
1 pt. Part 4
.5 pts. Union bound.
.5 pts. Apply part 3.
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Exercise 2.4. In this exercise, we develop a refined analysis that can reduce the additive
error substantially in (arguably realistic) settings when the stream is dominated by heavy
hitters.

Let S denote the sum of frequency counts of all elements that are not e-heavy hitters:

S= > fe
€:pe<e€
Note that S < m, and S might be much less than m when the stream is dominated by
heavy hitters.
Show that, by increasing the parameter w (in the count-min data structure) by a
constant factor, and still using universal hash functions, one can estimate the frequency of
every element with additive error at most €S with high probability in O(log(n)/e€) space.®

Solution to exercise 2.4. The high level idea is as follows. Fix an element e. Consider a
single instance of the hashed-counters data structure with w = [4/¢|. We have additive
error €5 if the following holds:

1. e does not collide with any of the e-heavy hitters.

2. The total noise from the remaining non-heavy hitters is at most €S.

We will show that each of the items above occur with probability at least 3/4. If so, then
by the union bound (with respect to the negated events), both occurs with probability 1/2.
That is, with probability at least 1/2, we have additive error at most €S. We amplify to
1/ poly(n) probability of error by making O(log(n)) copies.

We first analyze the probability that e does not collide with any of the heavy hitters.
Let D C [n] denote the set of heavy-hitters, we have |D| < 1/e. For a single heavy hitter
d € D, the probability that d collides with e is

P[h(d) = h(e)] <

S

since h is universal. Taking the union bound over all £ < 1/e heavy hitters,

1
P[h(e) = h(d) for some d € D] < g < 1

Now we analyze the additive error from all non-heavy hitters. Let X denote the
value of A[h(e)] excluding the contributions from the heavy hitters. We want to show
that X — f. < eS with probability at least 3/4. By (b) linearity of expectation and (c)
universality of h, we have

BIX - ]2 Y faPhd) =) € -3 f=2 <D,
c#e w cte w 4
c¢gD c¢D

8 Hint: Tt might be helpful to think about the special case of S = 0.
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By Markov’s inequality,
P[X — fe> eS| <P[X — fe > 4E[X — f]] <1/4,

as desired.

Remark B.1. We analyze two events: not colliding with other e-heavy hitters, and based
on noise from non-heavy hitters. Above we analyzed them separately and them combined
them via the union bound.

Since we are using limited randomness, you should be careful about how you are
combining the two events. If you are using universal hash functions, then you cannot analyze
one event conditional on the other — the other event “uses up” the randomness guarantee.

Rubric.
4 pts. Proving the element doesn’t collide with any heavy hitter with
probability (say) 1/4.
1 pt. Observe that w is a constant factor bigger than the
number of heavy hitters.
2 pts. Analyze probability of colliding with a single heavy
hitter (based on universality of hash function).
1 pt. Union bound.
4 pts. Proving that the error from non-heavy hitters is €S with
probability (say) 1/4.
3 pts. Analyzing expected error from non-heavy hitters.
1 pt. Linearity of expectation.
1 pt. Universality of hash function.
1 pt. Getting the right bound. (Some constant factor
less than €S).
1 pt. Use Markov’s inequality to bound the probability of large
error.
1 pt. Combine the two events above with the union bound.
1 pt. Amplification.

Exercise 2.6. This exercise gives a different and interesting application of hashing to string
matching. In string matching, we have a long text string 77[1..n], and a smaller search string
S[1..k], and we want to decide if S occurs in 7. For simplicity we assume these are bit
strings, but it is easy to generalize to larger alphabets.

The naive approach directly compares S[1..k] to each length-k substring T'[i, ..., 1+ k — 1],
and takes O(nk) time. A more sophisticated algorithm due to Knuth, Morris, and Pratt
compiles S into a deterministice finite automaton Ag of size O(k), and uses the automaton
Ag to search T in O(n) time. Here we take a different approach based on randomization.
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Now, a k-bit string = € {0, l}k can be thought of as an integer
Qk_lwl + 2k_2$2 + -+ 2T + 2

between 0 and 2¥ — 1. One might try to compute all the integers for the k-bit substrings
T[1.k,T[2,,k+1],...,Tn—k+1..n] of T and compare each to the integer form of S. But
this is really no different than the naive approach of direct comparison, since the integers
are k-bits long.

Suppose instead we took these integers modulo a prime p drawn from a range {2,...,q},
for sufficiently large ¢. Consider the hash function A : {0, 1}k — Z>q defined by

hzi k) = 214—11,1 + 2k_2332 +-+ 2z, 1+, modp

for a randomly selected prime number p. h is a rolling hash function: as we “shift” the hash
function by 1-bit from (say) bits 1,..., k to bits 2,...,k + 1, we need only update

Mg pr1) = 2(h(2z1.1) — 287 'a1) + 2441 mod p

with a constant number of arithmetic operations, instead of O(k) operations to compute it
from scratch.

The goal is to use the rolling hash function to design and analyze a fast randomized
algorithm for string matching. The problem of course is collisions between distinct substrings,
and the probability of collision depends on the random selection of p. The following facts
about prime numbers may be helpful:

e By the prime factorization theorem, every integer can be represented uniquely as a
product of prime numbers.

o By the prime number theorem, there are (1 — o(1))n/Inn primes between 1 and n.

e There is a deterministic polynomial time algorithm for verifying if a number is prime,
and a faster randomized algorithm that succeeds with high probability. In particular,
there is a deterministic algorithm that runs in O (k%) time for k-bit integers.

1. Let z,y € {0, l}k be two distinct k-bit strings interpreted as integers between 0 and
2% — 1. Observe that = 3 mod p iff p divides |z — y|, which is again an integer
between 0 and 2* — 1. Prove that there are at most logy(|z — y|) distinct prime
numbers dividing |z — y|.

2. Suppose p is a random prime number from the range {2,..., ¢} for some value q. How
large does g need to be to guarantee that p does not divide |z — y| with probability
(say) at least 1/27
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3. Using the observations from the previous 2 problems, design and analyze a randomized
algorithm searching for S in T that runs in O(n poly(log k)) time (the faster the
better). (Your algorithm should always be correct, and take O(n poly(log k)) time
in expectation. You can assume that arithmetic operations modulo p takes O(log p)

time.)”

Solution to exercise 2.6.

Part 1. Let |x —y| = p1---p¢ be the unique prime decomposition of |z — y|. Since each
prime is at least 2,

l
logy(z —y) = > _logy(pi) > L.
=1

Part 2. Let ¢ = Cklogk for a sufficiently large constant C'. Then there are at least
(1—o0(1))(g/log q) > 2log (k) primes in {1,...,k}. Since |z —y| < 2¥, at most log(k) of these
primes divide |z — y|. All put together, the probability that a uniformly random prime
between 1 and ¢ divides |x — y| is at most 1/2.

Part 3. We give two variations of essentially the same algorithm. The high level approach
is to construct a rolling hash function with probability of error at most 1/k. Now process
the length-k windows of T" with the rolling hash, updating the hash in poly(log k) time per
window. If a k-window hash matches the hash for S, then directly compare the window
with S to see if they are equal. If they are actually equal, then we are done. If they are not
equal, then we continue to the next window in 7. False positives occur with probability
with 1/k, and comparing exactly takes O(k) time, so we spend O(n) time in expectation
double-checking false positives. Observe that the double-checking step ensures that the
overall algorithm is always correct.

The first algorithm generates a rolling hash by creating O(log k) individual rolling hash
functions, each of which use a random prime between 1 and O(klog k), and has probability
of error 1/2. Jointly they have error probability at most 1/k, and take O(log2 k) time to
update.

9Hint: You might first try to get a O(n log nlogo(l) k) time algorithm that succeeds with high

probability. (This will still get most of the points.) Getting it down to O (n log®™) k) time is a little

trickier.
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Rabin-Karp-1(T'[l..n], S[1..k])
1. Fori=1,...,¢ where { = O(log k):
A. p; < random-prime(q) for ¢ = O(klog k).
B. define the rolling hash function h;(x) =z mod p;.
2. Let h(z) = (hi(x),...,hi(x)).
3. Forj=1,...n—k+1:
A. If h(T[j..k + j —1]) = h(S)
/] O <log2 k‘) time to update H(t[j..k + j — 1])
1. ¥ T[j..k+j—1] =S, then return (4,5 +k — 1) /] O(k) time

4. Return false

Here random-prime selects a random prime by uniformly sampling a number between
2 and ¢ and testing if it is a prime. Each random number is a prime with probability
Q(1/log(q)), so it takes O(log q) iterations on average to find a prime. Since testing a prime

takes O(log® q) time, random-prime takes O(log7 q) time in expectation.

RandomPrime (q)

1. Repeatedly:
A. Draw p € {2,..., ¢} uniformly at random.
B. If p is prime then return p. // O<10g6 q) time to test if p is prime.

Altogether, this first algorithm takes O(n log? k 4 log” k) time in expectation.

The second approach generates a rolling hash with a single random prime between 2

and O(k?log k). This hash function has error probability at most 1/k, and takes O(log k)
time to process and update.

Rabin-Karp-2(T[1..n], S[1..k])

1. p + random-prime(q) for ¢ = O(k?).
2. define the rolling hash function A(z) = x mod p.
3. Forj=1,...n—k+ 1
A. IfR(T[j..k +j—1]) = h(S)
// O(log k) time to update H(t[j..k + j — 1])
1. U T[j.k+j—1] =S, then return (j,j + k — 1) /] O(k) time
4. Return false

This second algorithm takes O(n log k + log” k:) time in expectation.
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Rubric.
1 pt. Part 1

e Basic reason: Each prime factor contributes at least 2
multiplicatively.

2 pts. Part 2

e Apply the prime number theorem and choose ¢ large
enough that ¢/log ¢ > 2log|z — y|.
7 pts. Part 3
3 pts. Describing the algorithm, with the following parts.

e Constructing a hash algorithm with probability of
error (1/k) or (1/n) by either:

— Describing how to construct a single-hash func-
tion with ¢ = O(klog k) get probability of error
1/2, and then amplifying by repetition to reduce
the error probability to 1/k or 1/ poly(n); or

— Choosing g large enough (Q(k?log k)) so that the
probability of error is at most 1/k or 1/ poly(n).

Either way, the solution should also explain and ana-
lyze how to generate a random prime.

e Scanning T with the rolling hash.

e Double checking for false positives.

Correctness analysis (of whatever algorithm you describe).

o Analyzing the error probability of your hash (either
amplifying constant error, or directly getting small
error with a larger prime.)

e Correcting from double checking false positives.

1 pt. Running time analysis (of whatever algorithm you de-
scribe).

o For an algorithm that uses double checking, show
how getting the probability of error down to 1/k pays
for the O(k) time spent double-checking each false
positive.

Exercise C.63. The goal of this exercise is to show how to get constant time access for n
keys with O(n) space, using only universal hash functions. We will require the following
fact that we ask you to prove.
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1. Let h : [n] — [k] be a universal hash function. Show that for & > n?, h has no
collisions with probability > 1/2.

Now we describe the data structure. We first allocate an array A[l..n] of size n. We
have one universal hash function hg into [n]. If we have a set of (say) k collisions at an array
cell A[i], rather than making a linked list of length %, and we build another hash table, with
a new universal hash function h;, of size k2, with no collisions (per part 1). (We may have
to retry if there is a collision.) If the total size (summing the lengths of the first arrray and
each of the second arrays) comes out to bigger than (say) 5n, we try again.

2. For each i =1,...,n, let k; be the number of keys that hash to the ith cell. We have

n
(sum of array sizes of our data structure) < n + Z k2.

i=1
Show that'’
Zkf < n+ O(total # of collisions (w/r/t ho)).
i=1
3. Show that
Eltotal # of collisions (w/r/t ho)] < n/2.
4. Show that

P[(sum of all array sizes) > Cn| < 1/2
for some constant C' > 0. (C' =5 is possible.)

Taken together, steps 1 to 3 above show that this approach will build a “perfect” hash
table over the n keys in O(n) space with probability of success at least 1/2, using only
universal hash functions. Even if it fails to work, we can then keep repeating the construction
until it succeeds. This approach works better in static settings, when the set of keys is fixed.

Solution to exercise C.63.

Part 1. Any two items collides with probability at most 1/k < 1/n?. Taking the union
bound over all (g) pairs of items, the probability of having at least one collision is at most

ny\1 nn-1) 1
= e
2 | n? 2n? 2

Thus the probability of having no collisions is at most 1/2.

0Here a “collision” is an unordered pair of keys with the same hash. The O(---) means you can
choose whatever constant you find convenient; 2 is possible.

405



B. Selected solutions Kent Quanrud
B.2. Homework 1 Fall 2025

Part 2. Suppose there are k; elements in slot ¢. If k; < 1, then there are no collisions.

Otherwise, there are (k?‘) > (k? —1)/2 collisions among these elements. Thus

2 2 ki\ _ :
;ki <n +i:§>1(ki - 1) <n-+ Z%212(2) = n + 2(total # of collisons).

Part 3. Any two items collides with probability at most 1/n. By linearity of expectation
over all (Z) pairs of items, the expected number of collisions is

(n)lzn(n—l) -
2/n 2n =

|3

Part 4. We have

Eltotal size] < n + Z E{kﬂ < 2n + 2 E[total # of collisions with respect to hy] < 3n.

2

By Markov’s inequality,
P(total size > 6n] < 1/2,

as desired.

Rubric.

2 pts. Part 1
1 pt. Single collision probability (invoking universality)
1 pt. Union bound

3 pts. Part 2

e Important to distinguish k; = 1 and k; > 1.

¢ Needs to relate collisions at each slot to the number of
collisions.

2 pts. Part 3

1 pt. Analyze single item’s collision.

1 pt. Linearity of expectation of all pairs.
3 pts. Part 4

2 pts. Compute E[total size].

1 pt. Apply Markov’s inequality.

Exercise C.4. Let G = (V, E) be an undirected graph. For k € N a k-cut is a set of edges
whose removal disconnects the graph into at least k connected components. Note that for
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k > 3, the minimum k-cut problem cannot easily be reduced to (s,t)-flow. In fact, the
problem is NP-Hard when k is part of the input.'!

1. Briefly describe how to modify the random-contractions to return a k-cut.'?
2. Analyze the probability that your modified algorithm returns a minimum k-cut.'?

3. Describe and analyze an algorithm, using your modified random-contractions as a
subroutine, that computes a minimum k-cut with high probability in O(nclk log® n)

time for constants ¢; and co. (We leave it to you to identify these constants; as usual,
the faster the running time, the better.)

4. How does your algorithm relate to the preceding statement that k-cut is NP-Hard
when k is part of the input?

Solution to exercise C.4.

Part 1. We run the contraction algorithm until there are ¢ = 2k — 1 vertices remaining,
and then try all possible k-cuts induced by this graph. Note that there are at most k21
possible k-cuts induced by 2k — 1 vertices, and it takes O(k2) time to compute the value of
each one (as there are at most O(k?) edges remaining).

Part 2. Fix a minimum k-cut. We first observe that

2n
c(E) > -

Indeed, every k — 1 vertices vy,...,vr_1 € V has total weighted degree > X since
d(v1)Ud(v2)U---Ud(vk—1) is a cut. Moreover, an edge e = {u, v} is cut by such a partition
only if at least one if its two endpoints are in the set {vy,...,vx_1}. There are at most
2(2:;) such cases for fixed e, since after choosing one of the two endpoints, we still have to
k — 2 vertices from n — 1 remaining. Thus

(k ! 1>A < Y o) < z(Z:;)cm

A

“distinet.
Now we have
A < (n—1)! (k—l)!(n—k+1)!:2k—1
¢E) — (k=2)!(n—k+1)! n! n

1You might find it helpful to focus on the case k = 3 and then generalize afterwards. Although
we ask you to work out the dependency on k, conceptually, it might help to think of k as being
relatively small compared to n.

2Your algorithm design may be informed by your calculations in part 2.

13You may want to pattern your analysis after the one for minimum (2-)cut; in particular, you
may want to develop analogs for Lemmas 4.2 and 4.3.
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Thus, for a randomly drawn edge e, we have

Plec C*] < Q(kn_l)

For k € Z>¢, let E; be the event that we have not sampled C* after i iterations. We
have
2(k—1 n—2k—-1)—1
PlEi1|Ei] > 1~ ( ) _ ( )

n—1 n—1

Let £ = (2k — 1) be a parameter TBD.

n—~{ n—~{—1 .
n—2k—-1)—i (n—(2k-=1)2
PlE,_/| = PlE; | Ei—1] > . = -
[En—] 1;[1 [Ei | Ei] g) n—i (—2(k—1)n!
In particular, for £ = (2k — 1), we have
_ _ | —1)!
PlE, > (n— (2k 1‘)).(2]{5 1)! _ 71I .
n: ((2k—1)>

Thus the algorithm succeeds with probability 1/ ((%"_1)).

Part 3. We repeat the algorithm above O(((%”_l)) log(n)) < O(n%*2 log(n)) times. The
probability of all instances failing is

(1 - 1/< - ))O((Q’“nl)log(”)) < ¢ OUogn) — 1/ poly(n)
2% — 1 = '

Each instance takes O(m log(n) + k%) < O(n%) time if we use a disjoint union data
structure to track the contractions. Thus the total running time is

O(n‘““_2 log(n)).

Part 4. An n©®) running time is not polynomial when k is part of the input.
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Rubric.
3 pts. Part 1
1 pt. Run until there are O(k) vertices left.
2 pts. Brute force on remaining graph
1 pt. Enumerate remaining k-cuts
1 pt. Directly calculate value of each remaining k-cut.
4 pts. Part 2
1 pt. Proving A < 2(k — 1)c(E)/n.
1 pt. Analyzing probability of surviving a particular round.
1 pt. Chaining probabilities together with conditional proba-
bilities.
1 pt. Calculate total probability of algorithm succeeding.
3 pts. Part 3
1 pt. Repeat until high confidence. (algorithmic description
and analysis)
1 pt. Time complexity analysis
1 pt. Part 4

« Note that n°®*) is not polynomial if k is part of the input.
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B.3 Homework 2

Exercise C.14. Prove Item 2 of Theorem 5.3.%*

Solution to exercise C.14. The analysis is similar to that of the gap theorem. For i € N,
let A;, B;, and v; be as in the proof of the gap theorem. As before, we have a connected
component of size k iff |A;| > i for all i < k.

The key idea in the gap theorem is that |A;| is an independent sum of {0, 1}-indicator
variables with E[|4;]] > (1 + Q(e€))i, so for i = Q(log(n)/€e?), |A;] > i with high probability.
The key idea here is similar: we have (roughly) E[|A;]] < (1 — €)i, so for i = Q(log(n)/€?),
we have |A;| < i with high probability.

More precisely, A; independently samples each vertex (except the starting one) with
probability ¢; = 1 — (1 — p)*. By the union bound, the probability a vertex appears in A; is
bounded above by ¢g; < pi. Thus, by linearity of expectation,

E[JAi]l=1+n—1)¢ <14+ (n—-1)pi <1+ (1—e¢)i.

By the Chernoff bound, for i = (log( )/€?), |A;| < i with high probability. That
is, for a particular starting vertex v, v’s connected component has at most O(log(n)/ 62)
vertices with high probability. Taking the union bound over all v, we conclude that with
high probability, all connected components have at most O(log(n)/€*) vertices.

Rubric.
2 pts. Setup the analysis

o Should establish is an independent sum of {0, 1}-indicator
variables and we have a connected component of size k iff
|A;| > i for all i < k.

4 pts. Analyze E[|4;]] < (1 —Q(e))i.
e Bound the probability of any particular vertex appearing
in Az
o Apply linearity of expectation over all non-starting ver-

tices.

2 pts. Apply Chernoff bound to show that |A;| < ¢ with high proba-
bility.
2 pts. Union bound over all starting vertices.

14Tt may be helpful to understand the proof of the gap theorem (Lemma 5.4) in Section 5.3.
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Exercise C.64. Design and analyze a deterministic 3/4-approximation algorithm for
max-SAT. "

Solution to exercise C.64.

Recall that a (3/4)-approximation can be obtained (in expectation )by the better of
uniform random sampling and randomly rounding the LP. The uniform random sampling
algorithm was already derandomized by the method of conditional expectations in Section 1.2.

We can also derandomize the LP rounding algorithm by using the method of conditional
expectations. To do this we need to be able to estimate the number of clauses to be satisfied.
This is implicit in the analysis. We first compute the LP solution y. Letting A denote the
the number of clauses that are satisfied, we have

m

EA=>1- ] =w) II w-

=1 jix; €C; J:Z2;€C;

Note that E[A] can be computed explicitly in polynomial time. By the method of conditional
expectations, we can iteratively round each y; to {0,1}-values to produce an assignment
x1,...,Tn € {t, f} satisfying E[A] clauses.

Meanwhile, let B be the number of clauses satisfied by a uniformly random assignment.
Recall that the uniformly random assignment can be derandomized (again by the method
of conditional expectations) so that at least E[B] clauses are satisfied.

Thus we have determinstic algorithms that satisfied E[A] and E[B] clauses, respectively.
The analysis from Section 6.1 shows that

max{E[A], E[B]} > %(E[A] + E[B]) > (3/4) OPT.

Thus we run our two deterministic algorithms and output the one satisfying more assignments
to obtain a determinstic (3/4)-approximation.

15You may first want to design and analyze a deterministic (1 — 1/e)-approximation algorithm for
max-SAT.
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Rubric.
1 pt. Derandomizing the oblivious algorithm — reference to Chapter 1
is fine.
7 pts. Derandomizing randomized rounding
1 pt. Solving the LP
2 pts. Formulating the expected number of satisfied clauses as
a function of the y;’s.
1 pt. Noting that the formula can be calculated.
3 pts. Derandomizing with conditional expectations.
2 pts. Taking the max of the two derandomized algorithms.

e Should point out that this is at least as good as the their
average.

Exercise C.45. Consider an instance of (weighted) set cover defined by sets Sy, ..., S, C [m]
and costs ¢; > 0 for each set S;. The goal is to compute the minimum cost collection of sets
covering [m]. We saw that solving the LP and then randomly rounding gives a O(log m)
approximation. Here we consider a special case where all the sets are small and obtain
a better approximation factor by a standard extension of randomized rounding called
alterations.

Let A € N be such that |Sj| < A for all j. Consider the algorithm round-and-fix for
which some speudocode is given below. round-and-fix is similar to randomized rounding
and has two stages. The first stage solves the LP and then rounds the solution scaled up by
some factor aw > 1. It is possible that some of the elements ¢ € [m] may not be covered. In
the second stage, we fiz each uncovered element by (deterministically) taking the cheapest
set that covers it.

round-and-fix(sets Si,...,S5, C [m], costs c€ R%y, a>1)

1. let z € [0,1]" solve the set cover LP

2. let F C{S1,...,S,} sample each set S; independently with probability
min{1, ax;}

3. for each i € [m]

A. if 4 is not covered by F
1. add the cheapest set covering ¢ to F

4. return F

Show that for an appropriate choice of «, this algorithm returns a O(log A) approximation
to the set cover instance (in expectation). (It is possible to get log A + log log A + O(1)
with care.)
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Solution to exercise C.45.

Let © € RZ, be the LP solution. (Here the LP from the lecture is adjusted to account
for the set costs by replacing the objective with > 1" ; ¢;x;.) For each point i, let Sj(;) be
the least expensive set covering ¢. Note that

(a) (b)
Goy < CGu | D | < Do ey (B.1)
j:iGSj j:’iGSj

where (a) is because of the covering constraint and (b) is because c;(;) < ¢; for all sets S;
covering 7.
When we scale up = by a = O(log(A)) (instead of log(m)) and then randomly round,

then we have the guarantee that for all i € [m], we either ax; for some set j covering i, or

1
P[i not covered]| < H (1-ay) <e s Y < N (B.2)
SjBi
since > S;2iYi = 1. If ¢ is not covered, then we pay at most c;(;) to cover it. Thus the
expected cost of fixing is bounded above by

Z P[i not covered]c (0) (2 A2 Z (d<) Z Z cjTj

i€[m] ze[m] JHi€S;

(f)
A2 ZCJCCJ‘S | < — A 2 ZCJ(I}J A OPTLP .

(c) is by inequality (B.2). (d) is by inequality (B.1). (e) is by interchanging sums. (f) is
because each set has size < A. Altogether we pay

1
aOPTrp +—

A OPTLP < O(log(A)) OPTLP .

Rubric.

2 pts. Scale up by O(log(A)).

3 pts. Probability a particular set is not covered is 1/ poly(A).
5 pts. Bounding the expected cost of fixing.

o Initially, bound the fixing cost with the sum, over all
elements, of the probability of not covering the element
times the minimum cost of any set containing the element.

e Somehow, maybe implicitly, bound the sum of minimum-
cost sets by A OPTyp.

o Use 1/ poly(A) probability of failing to cover an element
to offset the leading A factor above.
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Exercise C.9. Recall that in the heavy hitters problem, the goal was to estimate the
absolute frequency of each element (in [n]) up to an additive error of em, where m is the
total length of the stream. Another way to frame this to first let € R™ denote the frequency
vector; that is, x; is the absolute frequency of element ¢, and ||z||; = m. We can think of
count-min as estimating each coordinate z; with (one-sided) additive error of €||z||,.

In this problem we do something similar except with respect to the fo-norm. The goal is
to estimate each coordinate x; up to an additive error of +e¢||z||,, and holds for real-valued
x € R™ (unlike count-min, which only holds for nonnegative vectors). Formally, we start
with the all-zero vector = 0™. The stream presents data of the form (i, A), where i € [n]
and A € R, which indicates the update z; < z; + A. We want a data structure that can
estimate each coordinate z; up to =%el|x||, with high probability, in sublinear space.

Below we describe a data structure that can get +e||x||, error for an appropriate choice
of parameters. (This is like describing one “row” of the count-min data structure.) You will
first be asked to choose the parameters and prove the error guarantee. Then you will be
asked to amplify the data structure to obtain a high probability guarantee.

The data structure is as follows. Let € > 0 be given, let w € N be a parameter TBD,
and let A[l..w] be an array of values initially set to 0. Let h : [n] — [w] be a pairwise
independent hash function. Let g : [n] — {—1,1} be a second pairwise independent hash
function. The operations are as follows.

o For each update (i, A) presented by the stream, we set A[h(i)] < A[h(2)] + g(i)A.
o To retrieve an estimate for coordinate i, we return g(i)A[h()].
We now analyze this approach, as follows.

1. For each i, let y; = g(i)A[h(7)] denote the estimate returned by the data structure.
Prove that y; is an unbiased of x; for each i. (That is, E[y;| = x; for all i.)

2. What is the variance of y; (as a function of w)?

3. Prove that for an appropriate choice of w, the probability that |z; — y;| > €|z, is at
most 1/10. (w should depend on €, and in general, the smaller the choice of w, the
better. The choice of 1/10 is arbitrary; any probability less than 1/2 would suffice.)

4. Using the data structure designed above, design and analyze a data structure that, in
O(log(n)/€?) space, estimates each coordinate of z up to an additive error of +e| z||,
with high probability. (IL.e., probability of error at most 1/ poly(n).)

Solution to exercise C.9. This data structure is called count-sketch [CCF02], and is a
common topic in algorithms on sketching and streaming [Nel20; Chel4]. See [Chel4, §2] for
the solution.
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Part 1. We have
Ely;] = E[g(i)A[h(1)] = ZE[Q(Z')Q(J')}% P[h(i) = h(j)] = z;
j
since E[¢?(i)] = 1, and E[g(i)g(j)] = 0 for i # j by pairwise independence.
Part 2. 'We have

n n

E[y?] = > Y E[g*(0)g(k)g(0)| P[a(i) = h(k) = h(0)]zsae

k=1/(=1

E[g?(i)g(k)g(0)| = Blg(k)g(0)] = {(1) i Z 7:& ﬁ

by pairwise independence of g. (h) is by pairwise independence of h.
Now we have

Varly,] = Ely)* - B|y]
— 1 2
= wkz;éz‘xk

L2
< = lol3

Part 3. By Chebyshev’s inequality,

Var|[y;] 1
o3l 2 liels) < S =

For w > 10/€?, the RHS is at most 1/10.

Part 4. We make £ = O(log n) copies of the single “row” described above with w = [10/€?].
When retrieving an estimate coordinate for coordinate ¢, we return the median of the y;’s
over all the rows.

Call a single row’s estimate y; “good” if |z; — y;| < €[|z|, and “bad” otherwise. The
median over the y;’s is good if less than half the row-estimates y; is bad. A single row-
estimate y; is bad with probability at most 1/10, so we expected £/10 bad estimates. By the
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Chernoff bound, the probability that we get at least £/2 bad estimates is bounded above by

T N
poly(n)

So for each coordinate, the median is good with high probability. Taking the union bound
over all coordinates, we get additive error +e¢||z||, for every coordinate with high probability.

Rubric.
2 pts. Part 1
o Analyze expected value (correctly).
o Should point out where pairwise independence (for g) is
used.
2 pts. Part 2
e Correct analysis of variance.
e Note where pairwise independence is used for each hash
function.
3 pts. Part 3
e Apply Chebyshev’s inequality.
o Deduce w = O(1/€?).
3 pts. Part 4
o Duplicate rows O(log n) times.
e Return median.
 Point out that median is bad if and only if (at least) half
the rows are bad.
e Apply Chernoff to show the median is good with high
probability.
e Take the union bound over all coordinates.
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Appendix C

Scrambled problems

The exercises can be more fun when you don’t know which chapter they come from. Here
are all the problems, over all chapters covered in class, in random order.

Exercise C.1. Consider the particular case of hash tables with chaining with £ = n and an
ideal hash function h : [n] — [n]. Let A[l..n] be the cells of the hash table.

1. Consider a particular array slot A[i]. Show that for £ € N, the probability that A[i]
has > ¢ items hashed to it is

1
P[at least ¢ items being hashed to A[i]] < ik
2. Show that, with probability of error < 1/n?, the maximum length is at most
O(log(n)/loglogn).!

Exercise C.2. A classical case of discrepancy is the following “balanced covering problem”.
Suppose you have n sets over n points. The goal is to color all the points either red or blue,
so that each set has the same number of points of each color, or as close to the same as
possible.

pm———
o .~

'The simple lower bound of ¢! > (£/2)*/? may be helpful. It is implicit in the O(- - -) notation
that your bound need only hold for n sufficiently large.
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Numerically this is generalized and modeled as follows. Let A € [0, 1]"*" be a square
matrix with bounded entries. For a vector of signs 2z € {—1,41}", the discrepancy of x is
the quantity

| Az, = max|Az],

(If A is the {0, 1} incidence matrix of the n sets (as rows) to the n points (as columns), if
we let +1 denote the color blue —1 denote the color red, then || Az is the maximum color
imbalance over all the sets.) The general goal is to chose x € {—1,+1}" to minimize the
discrepancy.

Here the goal is to establish a baseline for this problem. Design and analyze an algorithm
that computes a point = € {—1,1}" with discrepancy

| Azl|, < O(q/nlog n>

Later in the semester we will improve the bound fto [|Az|| < O(y/n).

Exercise C.3. Prove or disprove: for any two random variables X,Y, and real-valued
function f(X,Y’), we have

E[BI(X.Y) | X]] = B[EL(X. )| Y]]

Exercise C.4. Let G = (V, E) be an undirected graph. For k € N a k-cut is a set of edges
whose removal disconnects the graph into at least k connected components. Note that for
k > 3, the minimum k-cut problem cannot easily be reduced to (s,t)-flow. In fact, the
problem is NP-Hard when k is part of the input.”

1. Briefly describe how to modify the random-contractions to return a k-cut.’
2. Analyze the probability that your modified algorithm returns a minimum k-cut.*

3. Describe and analyze an algorithm, using your modified random-contractions as a
subroutine, that computes a minimum k-cut with high probability in O(nclk log®? n)

time for constants ¢; and co. (We leave it to you to identify these constants; as usual,
the faster the running time, the better.)

2You might find it helpful to focus on the case k = 3 and then generalize afterwards. Although
we ask you to work out the dependency on k, conceptually, it might help to think of k as being
relatively small compared to n.

3Your algorithm design may be informed by your calculations in part 2.

4You may want to pattern your analysis after the one for minimum (2-)cut; in particular, you
may want to develop analogs for Lemmas 4.2 and 4.3.
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4. How does your algorithm relate to the preceding statement that k-cut is NP-Hard
when k is part of the input?

Exercise C.5. Recall the set cover problem for which we obtained a randomized O(log n)-
approximation. Here we consider a (maximum weight) set packing problem, defined as
follows.

Let [m] be a set of points, and let Sy, ..., S, C [m] be n subsets of [m]. Let by,...,b, >0
represent the profit of Si,...,95,, respectively. We say that a collection of sets F =
{Sj,,..., 5.} is a set packing if they are all disjoint. The total profit of such a set packing
is defined as the sum of profits b;, + --- + bj, of the corresponding sets.

The goal is to compute a set packing of maximum profit, but the problem is NP-Hard.
Here we consider the following (perhaps unusual) approximation criteria. Let OPT denote
the maximum profit of any set packing. For a > 1, we say that a collection of sets
Sj +---+5;, is an a-packing if each point is covered by at most « sets S;,. We say that a
randomized collection of sets F is a randomized approximate a-packing if

1. The expected total profit of F is at least OPT.
2. With high probability, F is an a-packing.

Design and analyze a polynomial time algorithm that outputs a randomized approximate
a-packing for o as small as possible.”

Exercise C.6. Let h : [n] — [¢] be an ideal hash function, with ¢ > n. What is the ezact
probability that h has no collisions (i.e., h is injective)?

Exercise C.7. Recall that the following randomized greedy algorithm gets a 1/e-
approximation for maximizing normalized nonnegative submodular functions subject to a
cardinality constraint of k.

randomized-greedy(f : 2 — Rsqg, N, k)

1. Sy« 0.

2. Fori=1,... k:
A. Let R; C N be the k elements e with maximum f(e|S;_1).
B. Sample e; ~ R; uniformly at random.
C. Set S; + S;_1 + e;.

3. Return Sg.

SHere we are interested in the approximation factor o — the smaller and closer to 1 the better —
and not the exact polynomial running time.
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What if f was also monotone? Analyze the randomized greedy algorithm for normalized
monotone submodular functions f.

Exercise C.8. Let P € R“" be the random projection function as described in Theorem 9.1,
for a parameter £ to be determined. We want to argue that for £ = O(k/e?), P approximately
preserves all of the vectors of a fixed subspace U of dimension k with high probability (in k).

To express this more formally, let U be a fixed (but unknown) subspace of R of dimension
k. We claim that, with probability at least 1 — e=9®*) we have

(1—)||lz|* < |Pz||> < (14 €)||z||* for all € U (simultaneously). (C.1)

Note that the algorithm does not know U; for this reason, P is called an (1 + €)-approximate
oblivious subspace embedding. Oblivious subspace embeddings are useful for developing
faster approximation algorithms in numerical linear algebra.

In this exercise we prove that P is an oblivious subspace embeddings with high probability.
Let U be a subspace of dimension k. Let S* be the unit sphere in the k-dimensional subspace
we want to preserve. Since the requirements of (C.1) are scale invariant, it suffices to establish
(C.1) for all points in S*.

Our argument makes use of a geometric technique called e-nets. For a set S, an e-net is
a set N such that for every point s € S, there is a point # € N such that ||z — s|| < €. We
need to show that there exists a relatively small e-net for S¥.

1. Let N C S*¥ be a maximal set of points such that any two points in N have distance
at least e. Show that N is an e-net, and that N has at most (1 + 2/€)* points.”

Let N be an (1/2)-net of S* with at most 5¥ points. Next we establish that we preserve the
length of all points in N is preserved with high probability.

2. Show that with probability 1 — e~?%) we have ‘HPa:H2 - 1‘ <eforall z € N, and
|(Px, Py) — (z,y)| < eforall z,y € N.

So now we know that we preserve all points of N with high probability. We want to argue
that this suffices to preserve all the vectors.

3. Prove that for any unit vector € S¥, one can write = g + 1 + 22 + - - - such that
for all ¢:

(a) flafl <27

6This is similar but different from the e-nets in Chapter 13.

"Hint: N packs |N| interior-disjoint k-dimensional balls of radius €/2 into an k-dimensional ball
of radius 1 4 €/2. It is helpful to know that the volume of an n-dimensional ball of radius r is ¢, 7"
for a parameter ¢, > 0 depending on n.
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(b) s/ llzi]) € N2
Now use the representation above to prove that P is an oblivious subspace embedding.
4. Prove that (C.1) holds with probability at least 1 — e~ O*),

The high-level takeaway from the proof is that if you can embed an e-net of the unit sphere
for constant €, then you automatically embed the entire subspace.

Exercise C.9. Recall that in the heavy hitters problem, the goal was to estimate the
absolute frequency of each element (in [n]) up to an additive error of em, where m is the
total length of the stream. Another way to frame this to first let x € R™ denote the frequency
vector; that is, x; is the absolute frequency of element i, and ||z||; = m. We can think of
count-min as estimating each coordinate x; with (one-sided) additive error of e||z|;.

In this problem we do something similar except with respect to the fo-norm. The goal is
to estimate each coordinate x; up to an additive error of +el|z||,, and holds for real-valued
x € R (unlike count-min, which only holds for nonnegative vectors). Formally, we start
with the all-zero vector x = 0™. The stream presents data of the form (i, A), where i € [n]
and A € R, which indicates the update z; <+ z; + A. We want a data structure that can
estimate each coordinate z; up to =%e||x||, with high probability, in sublinear space.

Below we describe a data structure that can get +e||x||, error for an appropriate choice
of parameters. (This is like describing one “row” of the count-min data structure.) You will
first be asked to choose the parameters and prove the error guarantee. Then you will be
asked to amplify the data structure to obtain a high probability guarantee.

The data structure is as follows. Let € > 0 be given, let w € N be a parameter TBD,
and let A[l..w] be an array of values initially set to 0. Let h : [n] — [w] be a pairwise
independent hash function. Let g : [n] — {—1,1} be a second pairwise independent hash
function. The operations are as follows.

o For each update (i, A) presented by the stream, we set A[h(i)] < Alh(i)] + g(i)A.
o To retrieve an estimate for coordinate i, we return g(i)A[h(i)].
We now analyze this approach, as follows.

1. For each i, let y; = g(i)A[h(i)] denote the estimate returned by the data structure.
Prove that y; is an unbiased of z; for each i. (That is, E[y;] = z; for all i.)

2. What is the variance of y; (as a function of w)?

8Hint: Choose xg to be the closet point in N to 2. Observe that ||z — zo|| < 1/2 because N is a
(1/2)-net. It remains to express x — xg as the sum 21 + x5 + - - -. How might you choose x;?
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3. Prove that for an appropriate choice of w, the probability that |z; — y;| > €||z||, is at
most 1/10. (w should depend on €, and in general, the smaller the choice of w, the
better. The choice of 1/10 is arbitrary; any probability less than 1/2 would suffice.)

4. Using the data structure designed above, design and analyze a data structure that, in
O(log(n)/€%) space, estimates each coordinate of x up to an additive error of %e||z||,
with high probability. (IL.e., probability of error at most 1/ poly(n).)

Exercise C.10. Prove Turan’s theorem:

Turan’s theorem Any undirected graph G with m edges and n vertices has an
independent set of size (at least)

n2

2m +n’

(You may want to solve Exercise C.70 first.)

Exercise C.11. Let P be a set of n distinct points in the plane.
Consider the problem of computing the minimum distance ||p — ¢/|
between any two distinct points p,q € P. (If |P| < 1, the minimum
distance is defined as +o0.) For simplicity we assume the points are
in general position, so that all pairwise distances are unique. You
may have learned a deterministic divide-and-conquer algorithm
that runs in O(nlogn) time. Here we will analyze the running
time of a different randomized algorithm. To help build intuition,
first solve the following problem.

1. (3 points) Let aq,...,a, € R be n distinct numbers presented in a uniformly random
order. Imagine tracking the minimum as you examine the numbers one by one in (the
randomized) order. What is the expected number of times the minimum changes?

We assume black box access to a data structure for the following “threshold” version of
the minimum distance problem. Fix a threshold p > 0. The data structure takes O(1) time
to initialize, and starts with an empty point set. It supports the following operation:

insert(z): Insert a point 2 € R? into the underlying point set. If the minimum
distance in the underlying point set is (strictly) less than p, then return true;
otherwise return false. This operation takes O(1) expected time.’

9We can implement this data structure by building a “hash table over grid cells”. Initially we
have an empty dictionary for an empty point set. Given a point x = (z1,22), compute the key
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This subroutine, combined with part 1, suggests the following algorithm. Here we assume
that one can do math operations (add, subtract, square, etc.) in O(1) time, and that we
can sample a random permutation of n items in O(n) time.

1. Let p1,p2,-..,pn permute P uniformly at random. // O(n) time.

2. Let r; = 400 and 7o = ||p1 — p2||.

/% We maintain the invariant that r; is the minimum distance over p1,...,p;. */

3. Start a new instance of the threshold data structure with threshold ro. Insert
p1 and po.

4. Forv=3,...,n:

A. Insert p; into the threshold data structure. If the data structure returns
true:

1. Let r; = min{||p; — p;|| : j < i}.
2. Replace the threshold data structure with a new one with radius r;.
Insert pq,...,p; into the data structure.

B. Otherwise set r; = r;,_1.

5. Return r,.
Now analyze this algorithm via the following steps.
2. (3 points) For each index i > 2, analyze the exact probability that r; < r;_1.

3. (4 points) Finally, bound the expected running time of the algorithm.

Exercise C.12. Let P C R? be a set of n points. Let f : R* — R* be a random projection
with k = O(log(n)/€e?) (per Theorem 9.1). Recall that with high probability (say, > 1—1/n?),
we have

(L =ollel® < @) < 1+ )|l

for all x € P, and we also have

(1= o)llz —yl* < If (2) = FWI* < A+ €)llz — yII*

key(@) = (|z1/(p/V?2)], |22/(p/v2)| in O(1) time. (Rounding is not a standard operation in all
models of computation, but here we assume it takes O(1) time.) If this key is already occupied
by a point y € P, then ||z — y|| < p, and we return true. Otherwise consider the 8 “neighboring”
keys/cells where we add or subtract at most one or zero to each of the key’s coordinates. Assuming
the minimum distance was > p before inserting x, each of these 8 cells can have at most 1 point. If
the distance between z and any of the O(1) points in neighboring cells is < p from z, return true.
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as well as
(L= ale+yll* < @)+ f@IP <A+ o)z +y|?

for all z,y € P. Show that with high probability, we also have
[(f(@), f() — (@, )| < ell=]l][y]]

for all z,y € P."0
Exercise C.13. Prove that Var[X] = E[X?] — E[X]*.
Exercise C.14. Prove Item 2 of Theorem 5.3.

Exercise C.15. In CIPs we allowed each x; to be as large as we want. Suppose we added
the constraint z; < 1 for all j. Would the randomized rounding algorithm from Section 6.3
still obtain a (1 — 1/e)-approximation ratio? Why or why not?

Exercise C.16. Let £ < k. Prove that an LRU cache of size k is k/(k + 1 — £)-competitive
with any cache of size /.

That means, for example, that an LRU cache of size k is 2-competive with any cache of
size k/2. Some people find this bound more compelling.

You should be able to prove this by a short modification of the argument of the k-
competitive bound. It suffices to point out which part of the argument should change, and
how.

Exercise C.17. This exercise is about estimating Fj for k > 2 with sublinear space as the
elements are presenting in a stream (as described in the introduction). Let g(z) = x* for
fixed . Then Fj, = ", g(fi), where f; is the frequency of item ¢. We break down the design
and analysis of such an estimator into steps below, but you are encouraged to try to design
one yourself first.

For each element e € [n], and each index in the stream ¢ € [m], let fe(i) be the frequency
of element ¢ after ¢th iterations. Consider the random variable Y defined by

v Em(g(f = 10) = a1~ ) = 1)

where ¢ € [m] is drawn uniformly at random.

107t might by helpful to work through the special case where ||z|| = ||y|| = 1. Showing O(e||z||||y]|)
error is fine; a proper e||z||||ly|| then follows from dividing e by a constant factor.
Tt may be helpful to understand the proof of the gap theorem (Lemma 5.4) in Section 5.3.
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1. How can you implement Y in a streaming fashion? (In a stream, you don’t know
12

2. Prove that Y is an unbiased estimator for Fj.
3. Prove that the variance of Y is at most kn!=1/ kF,?.B

4. Using Y, design and analyze a streaming algorithm that computes a (14 ¢€)-
approximation for Fj with probability 1 — §, for given parameters ¢ and §. In
addition to the correctness, analyze the time and space of your algorithm.

Exercise C.18. Show that there exists universal constants ci,cy > 0 such that for all =
with |z| < ¢y,

14+2< eTc2?

(In other words, you can choose whatever constants ¢; and ¢z are convenient to you.)

Exercise C.19. This exercise is about a simple randomized algorithm for verifying matrix
multiplication. Suppose we have three n x n matrices A, B,C. We want to verify if
AB = C. Of course one could compute the product AB and compare it entrywise to C.
But multiplying matrices is slow: the straightforward approach takes O(n?) time and there
are (more theoretical) algorithms with running time roughly O (n*37). We want to test if
AB = C in closer to n? time.

The algorithm we analyze is very simple. Select a point z € {0,1}" uniformly at random.
(That is, each z; € {0,1} is an independently sampled bit.) Compute A(Bz) and Cz, and
compare their entries. (Note that it is much faster to compute A(Bx) than AB.) If they are
unequal, then certainly AB # C and we output false. Otherwise we output true. Note
that the algorithm is always correct if AB = C', but could be wrong when AB # C. We
will show that if AB # C| the algorithm is correct with probability at last 1/2.

1. Let y € R™ be a fixed nonzero vector, and let 2z € {0,1}" be drawn uniformly at
random. Show that (z,y) = S, 2;y; # 0 with probability at least 1/2. 4

2. Use the preceding result to show that if AB # C, then with probability at least 1/2,
ABzx # Cz."

12 Hint: Exercise 2.5.

13 Hint: This is a bit messy. One approach is to first show that Var[Y] < kFyFp,_1, and then
bound FiFy_1 < nlil/kaQ;.

Y int: Suppose for simplicity that the last coordinate of y is nonzero. It might help to imagine
sampling the first n — 1 bits and computing the partial sum S, _1 = Z?;ll xy; first, before sampling
Ty and adding x,yn. Formally your analysis may involve some conditional probabilities. (And what
about the case where y, = 0%)

15Even if you haven’t solved part 1 you may assume it to be true.
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3. Suppose we want to decrease our probability of error to (say) 1/n?. Based on the
algorithm above, design and analyze a fast randomized algorithm with the following
guarantees.

o If AB = C, then it always reports that AB = C.
o If AB # C, then with probability of error at most 1/n?, it reports that AB # C.

(Your analysis should include the running time as well.)

Exercise C.20. In this exercise, we will develop a 2-approximate LSH scheme for bit strings
s €40, 1}d of a fixed length d with respect to Hamming distance. The Hamming distance
between two strings s,t € {0, 1}d this fraction of coordinates in which they differ:

(6 € [d) : 5: # i}
d

Hamming(s,t) =

Of course one can treat bit strings as vectors in R? where the Hamming distance coincides
with the Euclidean distance squared. Here we explore an alternative approach.

1. Consider the randomly constructed hash function A : {0,1}¢ — {0,1} defined by
h(z) = x4,

where i € [d] is sampled uniformly at random. For two points s, ¢ € {0,1}%, what is
P[h(s) = h(t)], as a function of the Hamming distance between s and ¢7

2. Fix a target distance r € [0,1]. Construct a data structure that over a set P of n
strings {0,1}? to answer the following query with high probability.

Given a query point s € {0, 1}d, either return a point x € P with Hamming
distance < 2r from s, or declare that there are no points within Hamming
distance r from s.

In addition to describing the algorithm, one should analyze the preprocessing time
and space, the query time, and the probability of correctness.

3. Briefly describe how to use the above data structure to efficiently find 2-approximate
nearest neighbors with respect to Hamming distance (with high probability). Analyze
your running time.

Exercise C.21. Recall the randomized O(log n) approximation algorithm for sparsest cut
based on Li-embeddings. Note that this is also logarithmic in the number of demand pairs,
(g) We consider the case where the demands are sparse; more precisely, where there are at
most k commodities (i.e., pairs) {s,t} with nonzero demand b(s,t) > 0.
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1. Prove the following extension of Theorem 11.14:

Letd: VXV — Rxg, and let T C V be a subset of points with ¢ = |T'|. Then
for h = O(log2 E), one can compute a randomized embedding f : V — RP
such that:

(a) For allw,v €V, ||f(w) — f(0)l; < O(log )d(u,v) (always).
(b) With high probability, for all s,t € T, || f(s) — f(t)|l; > d(s,1).

2. Describe (rigorously) how to adjust the algorithm and analysis from Section 11.3
to obtain a randomized O(log k) approximation factor, where k is the number of
commodities with nonzero demand.

Exercise C.22. Consider the minimum cut problem in undirected graphs. For a > 1, we
say that a cut C = 0(9) is an a-approzimate minimum cut it its capacity is at most « times
the capacity of the minimum cut.

1. Let C be an a-approximate minimum cut. Suppose we run the random-contractions
algorithm run until there are O(«) vertices remaining. Show that C' is preserved by
the algorithm with probability > 1/ (O’("”a)).

2. Show the number of a-approximate minimum cuts is at most

nO@),

Exercise C.23. Extend the approximation algorithm for set cover to positive costs. For
each set, there is a positive cost ¢; > 0. The goal is to compute the minimum cost collection
of sets that covers all the points.

Exercise C.24. Suppose you only have access to a coin that flips heads with a known
probability p, and tails with (remaining) probability 1 — p. Describe and analyze a protocol
that uses a limited number of tosses of this biased coin in expectation (the smaller the
better) to simulate 1 coin toss of a fair coin. (The expected number of biased coin tosses
you make may depend on p.)

Exercise C.25. Show how to use the randomized tree metric to randomly round the
sparsest cut LP and obtain a O(log n)-approximation for sparsest cut.'°

16Ty to prove tree metrics are also L;-metrics.
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Exercise C.26. Prove or disprove: For any two events A, B,

P[A A B] < min{P[A], P[B]}.

Exercise C.27. You run a double-secret laboratory and for your experiments you need to
monitor the temperature of the lab very carefully. To this end you can buy thermostats
11, ...,y that purport to measure the temperature u, but the thermostats are imperfect.
You have the following facts.

1. Given the actual temperature p of the lab, the thermostat readings 7; are independent.

2. Each thermostat is calibrated so that its expected value E[T;] equals the actual
temperature p of the lab.

3. For each thermostat T;, the variance Var[T}] of the thermostat is o for a known
parameter o > 0.

Given parameters €,0 € (0,1), the goal is to be able to measure the temperature of the
room with additive error at most € with probability at least 1 — §. Describe and analyze a
system that, using as few thermostats as possible'’, obtains additive error ¢ with probability
at least 1 — 9.

Exercise C.28. Recall the randomized rounding based proof of the max-flow min-cut
theorem. Recall that we analyzed a random cut which was based on a threshold 6 € (0, 1)
chosen uniformly at random. Prove or disprove that for (essentially) all § € (0,1), the
corresponding cut is a minimum {s, t}-cut.

Exercise C.29. Recall the bicriteria approximation algorithm for the minimum bisection
problem from Section 11.4.
1. Show that the algorithm returns a 1/3-balanced cut.
2. For each iteration i, w/r/t the graph remaining at iteration i, we have
0(S; OPT
e < otosm) .
i

3. Combine the two parts above to prove that the algorithm returns a 1/3-balanced cut
of size O(logn) OPT.

Tup to constant factors independent of €, §, and o
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Exercise C.30. The deterministic greedy algorithm takes O(nk(@) time where @) denotes
an evaluation query to f. For large values of k this may be prohibitively slow. The following
algorithm introduces random sampling to try to speed up the algorithm.

subsampled-greedy(f,N ,k,e € (0,1))

1. So +— 0.

2. Fori=1,... k:

A. Let R C N sample nlog(1/e)/k elements independently with repetition.
B. Let e¢; € R maximize f(e|S;_1).
C. Set S; + S;_1 + €.

3. Return Sj.

Analyze subsampled-greedy per the following steps.
1. Analyze the expected running time of subsampled-greedy.
2. Prove that for all 4, conditional on S;_1,

1—c¢
k

E[f(Si|Si-1)] = (OPT —f(Si-1)).

3. Analyze the overall approximation ratio (in expectation) of Sk.

Exercise C.31. Recall the quick-select algorithm introduced in Section 1.1.3. The goal
of this exercise is to prove that quick-select takes O(n) time in expectation. Below we
present two different approaches which offer two different perspectives. Both analyses
should use linearity of expectation and we ask you to point this out explicitly.

1. Approach 1. Analyze quick-select similarly to quick-sort, based on the sum of
indicators X;.

One approach is to reduce to a separate analysis for each of the following 4 classes of
pairs:

(a) Xjj where i < j <k,

(b) Xj; where i < k < j,

(c) Xij where k <7 < j, and

(d) X;; where either i =k or j = k.

For each case, show that the expected sum is O(n).
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2. Approach 2. The following approach can be interpreted as a randomized divide and
conquer argument. We are arguing that with constant probability, we decrease the
input by a constant factor, from which the fast (expected) running time follows.

(a) Consider again quick-select. Consider a single iteration where we pick a pivot
uniformly at random and throw out some elements. Prove that with some
constant probability p, we either sample the kth element or throw out at least
1/4 of the remaining elements.

(b) For each integer i, prove that the expected number of iterations (i.e., rounds of
choosing a pivot) of quick-select, where the number of elements remaining is
in the range [(4/3)%, (4/3)"1), is O(1).'®

(¢) Fix an integer i, and consider the amount of time spent by quick-select while
the number of elements remaining is greater than (4/3)"~! and at most (4/3)".
Show that that the expected amount of time is < O((4/3)")

(d) Finally, use the preceding part to show that the expected running time of
quick-select is O(n).

Exercise C.32. Consider the special case of the distinct elements streaming problem where
there are n + 1 total items in a stream, each of which is one of n different possible items
{1,...,n}. Show that any algorithm that maintains the number of distinct elements exactly
throughout the stream has to use at least n bits of memory.

Exercise C.33. In most textbooks, max flow is presented as the following LP, which in
particular has polynomial size in the input graph G.

maximize Z Ze — Z ze over z : I/ — R>q

ecdt(s) e€d—(s)
st. ze <c(e) forallee E (C.2)
Z Ze = Z ze for all v e V'\ {s,t}.
ecdt(v) e€d—(v)

The second set of constraints are called flow conservation constraints. Show that the above
LP is equivalent to the (fractional path packing version of) (Max-Flow) in the following
sense.

1. Show that for every (feasible) fractional path packing P, there is a feasible solution z
to (C.2) with the same objective value.

18Hint: Exercise C.35.
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2. Show that for every feasible solution z to (C.2), there is a feasible path packing P
with the same objective value.”

Exercise C.34. Design and analyze an algorithm that computes a spanning tree with
uniform stretch n — 1 (matching the lower bound induced by the cycle).

Exercise C.35. Suppose you repeatedly flip a coin that is heads with fixed probability
p e (0,1).

1. What is the expected number of coin flips until you obtain one heads??’ Prove your
21
answer.

2. What is the expected number of coin flips until you obtain two heads? Prove your
answer.

3. For general k£ € N, what is the expected number of coin tosses until you obtain k
heads? Prove your answer.

Exercise C.36. Prove Lemma 5.2. (Here the important part is not the constant, 1/3 — any
constant ¢ > 0 is already interesting.)

Exercise C.37. Let A and B be two events with P[A] + P[B] = 1. Prove or disprove:
P[AvB]=1iff PIAA B] =0.

Exercise C.38. This exercise is about how for many intents and purposes, we approximately
have the extremely convenient identity, “1 4+ x ~ e*”.

1. Prove that for all z € R, 1 + z < e”.

Hint: At x = 0, both sides are equal. What are their respective rates of change moving
away from 07

2. Prove that forallz <1,e* <1+ zx+ 22

19The second problem is trickier than the first. One should be able to prove it using only the ideas
and results in this chapter (without retracing the flow algorithms of ensuing chapters).

20Tf the first toss is heads, that counts as one coin flip. If the first toss is tails and the second toss
is heads, that counts as two coin tosses. Etc. It may be helpful to first think about a fair coin, where
p=1/2.

21 Hint: There is an easy way and a hard way to solve this problem.
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Exercise C.39. Prove that given k independent copies X1,..., X} of the same random
variable X,

k
1 1
Var lk‘ ; Xi] = 1 Var[X].
Exercise C.40. Complete the proof of Theorem 6.4.

Exercise C.41. The definition of PAC learning requires finding a low-error hypothesis
with probability at least 1 — § for aribtrary ¢ > 0. Consider the following weaker definition
of PAC learning where we drop the requirement on 4: let us say that an algorithm is a
weak PAC learner if for any € > 0, with a training set of size poly(1/¢), and in randomized
polynomial time, it produces a hypothesis with error at most ¢ with probability at least
1/2. Design and analyze a system that takes as input a weak PAC learning algorithm and
produces a PAC learning algorithm (in the original sense).

Exercise C.42. For CIPs, we could assume without loss of generality that A;; < b; for all
i,7. (In fact this assumption was critical for applying the Chernoff bound.) Suppose now
that we had AA;; < b; for all 4, j for a parameter 1 < X <log(n). Design and analyzing a
O(log(m)/A)-approximation algorithm for this setting.

Exercise C.43. The defining characteristic of LPs is that the objective and all linear
constraints are given by linear functions. It is natural to generalize this notion and consider
mathematical programs where the objective and linear constraints are all given by low-degree
polynomials; say, bounded by a degree d. Let us call these “degree d polynomial programs”.
Linear programs are degree 1 polynomial programs.

Prove that degree d polynomial programs are NP-Hard to solve for d > 3. To this end,
pick a suitable NP-Hard problem, and design a degree 3 polynomial program that can be
rounded to a discrete solution without any loss.?>

Exercise C.44. Our department has a large catalog of classes and a handful of course
requirements you have to satisfy to graduate. The requirements seem to be particularly
complicated for undergraduates. Each requirement is defined by a subset of classes and a
number specifying the number of courses you have to take from this subset.

Formally, let the courses be indexed 1 through n. We have L requirements
(S1,k1),...,(SL, kL), each consisting of a set S; C [n] and an integer k; € N. For each i,
you have to take at least k; classes from S;. Let T' C [n] be the set of classes you've already
taken. Let m = ",|S;| denote the total size of all the sets.

22Better yet, prove the same for d > 2.
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Now we have two possible interpretations of the rules. In the first version, a single
class can only count towards a single requirement. In the second version, a single class can
count towards any number of requirements. For example, suppose you are required to take
(k1 = 2) classes from S; = {A, B,C} and (k2 = 2) classes from Sy = {C, D, E'}, and you
have already taken T'= {B, C, D}. In the first version, you do not have enough classes to
graduate; in the second version, you do have enough classes to graduate.

Here we have related but slightly different problems for the two systems.

1. (5 points) Suppose a single class can only count towards a single requirement. Consider
the problem of deciding if you have already taken enough classes to graduate. For
this problem, either (a) design and analyze a polynomial time algorithm (the faster
the better), or (b) prove that a polynomial time algorithm would imply a polynomial
time algorithm for SAT.

2. (5 points) Now suppose a single class can count towards any number of requirements.
Consider the problem of identifying the minimum number of additional classes that
need to be taken to satisfy all the requirements. For this problem, either (a) design
and analyze a polynomial time algorithm (the faster the better), or (b) prove that a
polynomial time algorithm would imply a polynomial time algorithm for SAT.

Exercise C.45. Consider an instance of (weighted) set cover defined by sets S1, ..., S, C [m]
and costs ¢; > 0 for each set S;. The goal is to compute the minimum cost collection of sets
covering [m]|. We saw that solving the LP and then randomly rounding gives a O(logm)
approximation. Here we consider a special case where all the sets are small and obtain
a better approximation factor by a standard extension of randomized rounding called
alterations.

Let A € N be such that |Sj| < A for all j. Consider the algorithm round-and-fix for
which some speudocode is given below. round-and-fix is similar to randomized rounding
and has two stages. The first stage solves the LP and then rounds the solution scaled up by
some factor o > 1. It is possible that some of the elements i € [m] may not be covered. In
the second stage, we fix each uncovered element by (deterministically) taking the cheapest
set that covers it.

round-and-fix(sets Si,...,S, C [m], costs c€ R%,, a>1)

1. let x € [0,1]™ solve the set cover LP

2. let F C{S1,...,S,} sample each set S; independently with probability
min{1, ax;}

3. for each i € [m]

A. if ¢ is not covered by F'
1. add the cheapest set covering i to F

4. return F
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Show that for an appropriate choice of «, this algorithm returns a O(log A) approximation
to the set cover instance (in expectation). (It is possible to get log A + loglog A + O(1)
with care.)

Exercise C.46. Prove linearity of expectation (Theorem 0.3).

Exercise C.47. We consider the problems of estimating the mean and the median of a
stream of numbers. The input consists of a stream of integers 1, xo, ..., presented one
at a time, of unknown length m. Your algorithms should use sublinear space and return
(1 + ¢)-approximations (as defined below) of the desired statistics with probability at least
1-9.

We expect you to analyze the space, the running time, and the probability of outputting
an accurate solution. The smaller the space, and in general the lower the dependency on
e and J, the better. For simplicity you can assume it takes O(1) space to store a number
and it takes constant time for basic operations like adding, subtracting, and multiplying
numbers.??

It may be helpful to be aware of a streaming algorithm called reservoir sampling that
maintains a sample of 1 element drawn uniformly at random from the stream. This algorithm
is easy to describe. It takes the first element deterministically. For ¢ > 1, with probability
1/i, it takes the ith element and replaces the element previously held by the algorithm. It
is known (and you can assume as fact) that at any point in time, the element held by the
algorithm represents an element sampled uniformly at random from the stream. Note that
for any k € N, one can maintain a random sample of k£ elements with repetition from the
stream by running k copies of the single-element reservoir sampling algorithm in parallel.

The two statistics we are interested in are defined as follows. Let 6, ¢ € (0,1) be fixed.

1. (2 points) A (1 £ €)-approximation of the mean of the stream with probability at least
1 —§. That is, if the mean is z, then you should return a value y in the interval
(1—ez<y<(l+¢)

2. (8 points) A rank-wise (1 £ €)-approximation of the median number in the stream with
probability at least 1 —¢§. That is, if the stream has m total numbers, then you should
return an element whose rank r is in the interval | (1 —€)m/2] <r < [(1 +¢)m/2].%*

Exercise C.48. Recall that when we roll six-sided dice, the dice samples an integer between
1 and 6 uniformly at random. Let us call an unordered pair of dice “lucky” if one of them is
a 1 and the other is a 6.

230f course you are not allowed to abuse this with something bizarre like using a polynomial-bit
integer as a bit map. This isn’t battlecode.
24An element has rank 7 if it is the ith smallest element.
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If we roll 6 independent six-sided dice, how many lucky pairs do we expect? Note that a
single dice may appear in more than one lucky pair. For example, the following roll of six
dice has 2 lucky pairs amongst them.

Exercise C.49. Prove or disprove: For any two events A and B, if P[A] + P[B] > 1, then
P[A A B] > 0.

Exercise C.50. Provide directly (and without leveraging the techniques from Section 13.2)
that sampling O(log(g(|P|))/€e) points gives an e-net with constant probability.

Exercise C.51. Consider the minimum cut problem in undirected graphs. We say that a
cut C' = §(S) is a 2-approximate minimum cut it its capacity is at most twice the capacity
of the minimum cut.

1. Let C be an 2-approximate minimum cut. Suppose we run the random-contractions
algorithm run until there are 5 vertices. Show that C' is preserved by the algorithm
with probability > 1/(}).

2. Show the number of 2-approximate minimum cuts is at most
(@) (n4> .

Exercise C.52. Consider the randomized algorithm for minimum cut based on building
the minimum spanning tree w/r/t randomized weights, described in Section 4.1.

1. Prove that this algorithm is equivalent to the random contractions algorithm for
unweighted graphs.

2. Adjust the randomized spanning tree algorithm to account for weights, and prove its

correctness.

Exercise C.53. This exercise asks you to prove the e-net theorem, Theorem 13.4. One can
prove it similarly to the e-sample theorem, Theorem 13.2. Below we define the events A
and B for you to get you started, and ask you to complete the proof (in full detail).
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Let Q1 and @2 be two random samples of points (of appropriate size, TBD by
you) inducing measures pq and pg, respectively. Define the events A and B by:

def

A= the event that Q1 N7 =0 and u(r) > € for some r € R.
B the event that Q; Nr = ) and uy(r) > €/2 for some r € R.

Exercise C.54. Let A and B two events. Prove or disprove that A and B are independent
iff A and B are independent.

Exercise C.55. Let A and B be two events. Prove that the following three identities are
all equivalent:

P[A|B|=P[4], P[B|A|=P[B], P[4 B]=P[AP[B]

(That is, if A and B satisfies any one of the identities above, then it automatically satisfies
the other two.)

Exercise C.56. One can also consider the bisection problem in directed graphs. Here the
goal is to find a vertex set S of size [n/2] < |S| < [n/2] minimizing the cost of the directed
cut ¢(6%(S)). Suppose one had access to a O(log n) approximation algorithm for uniform
directed sparsest cut (as described in ?7). Using this as a subroutine, design and analyze
an algorithm that obtains a bicriteria approximation algorithm for the minimum directed
bisection problem with essentially the same approximation bicriteria for the undirected
setting: compute a set S with n/3 < |S| < 2n/3 with cost ¢(67(5)) at most a O(log n)-factor
greater than that of the minimum directed bisection.

Exercise C.57. The following problem, called the buy-at-bulk network design problem,
models the situation where you are building out a network that supports communication
between various terminal pairs with minimum total cost, with “economies of scale” built
into the cost function.

Formally, we have an undirected graph G = (V, E) with edge lengths ¢ : E — Rxq.
There are k terminal pairs (s1,%1), ..., (Sk, tx), each associated with a demand d; > 0. The
high-level goal is to choose a walk w; : s; ~» t; for all ¢ minimizing the “cost” of buying
enough capacity of each capacity to route all these paths simultaneously. To model the
cost, we are given a monotone subadditive function f : R>¢p — R>o, and for each edge, we
pay f(u) for capacity u per unit length. Montone means that f(u) is nondecreasing in wu.
Subadditive means that f(u; +u2) < f(u1) + f(uz) for u,v > 0.
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Now, each edge must have enough capacity to route all the demand of all the paths
using it. Thus the total cost of a selection of paths {p; : s; ~t; :i=1,...,k} is

el D di

ecE irecw;

This problem is NP-Hard, so instead we will try to approximate it. Our goal is to design
and analyze a polynomial time approximation algorithm for the buy-at-bulk network design
problem.

We will use the randomized tree metric of Section 12.3. The algorithm is as follows. We
first compute a randomized tree metric dp, with underlying weighted tree (7" = (Vip, E), p :
Er — R>p), over the shortest path metric of G with respect to £. Treat T as a graph with
edge lengths /7, and mapping the terminal pairs (s;,t;) to the corresponding leaves of T,
we solve the buy-at-bulk network design problem over T' with the same cost function f. We
then map this solution back to walks in G and return this solution.

To elaborate on the second point, recall that every edge node in T is associated with a
cluster centered at some vertex in G. Each edge e in T is supported by the shortest path
in G between the vertices associated with the endpoints of e. Denoting this path by P,
for e € Ep, we have {(P.) < {r(e). In this way, every path P in T maps to a walk W in G
obtained by concatenating the walks supporting the (tree) edges in P.

We break down the analysis into the following steps.

1. Design and analyze an algorithm that solves the buy-at-bulk network design problem
exactly in a tree. (This shows that the first step is exact.)

2. Describe a mapping from solutions in G to solutions in the randomized tree metric T'
such that for a fixed solution in G, in expectation (over T'), the cost of the mapped
solution in 7" is at most a O(logn) factor greater than original cost in G.

3. Show that for every solution in 7', there is a solution in G where the cost in G is at
most the cost in 7.

4. Combine the three parts above to prove that the randomized solution returned by
our algorithm has expected cost O(log n) OPT.

Exercise C.58. A funny characteristic of the distinct elements estimator in Section 8.1 is
that it is not monotone — |B| can go down when the next element e; kicks out a previously
sampled copy of the same element — even though the true number of distinct elements is
nondecreasing.

Design and analyze a streaming algorithm with the same performance as the distinct
elements algorithm, with the additional property that the estimate is nondecreasing.
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Exercise C.59. You have a sequence of n switches Sy, ..., S, that jointly control m light
bulbs Li,..., L,,. Each switch can be “up” or “down”, and this controls whether the light
bulbs are on or off.

Each light bulb L;, is associated with two sets of switches A;, B; C [n]. The switches in
A; turn on the light bulb when they are “up” and the switches in B; turn on the light bulb
then they are “down”.

More precisely, for each j € A;, having switch S; “up” automatically turns on the light
bulb. (It only takes one of these switches to be “up” to turn on the light bulb.) For each
J € Bj, turning the switch “down” automatically turns on the light bulb. (Again, it only
takes one of these switches to be “down” to turn on the light bulb.)

Thus, for a light bulb L;, the light bulb L; lights up if and only if either (a) some switch
in A; is flipped up or (b) some switch in B; is flipped down. A; and B; are generic subsets
of switches, not necessarily disjoint, and their union does not necessarily include all the
switches. We do assume, however, that |4;| + |B;| > 2 for all i. We assume that the sets
A; and B; are given explicitly for each i (for simplicity; otherwise they can be obtained by
inspection).

Your algorithm can flip switches “up” and “down”. For the sake of running times, assume
that flipping a single switch takes O(1) time, and inspecting whether a single light bulb is
on or off takes O(1) time. The light bulbs turn on and off instantly when you flip a switch.

For each of the following decision problems, either (a) design and analyze a polynomial
time algorithm (the faster the better), or (b) prove that a polynomial time algorithm would
imply a polynomial time algorithm for SAT.

1. Decide if there exists a way to flip the switches to turn on all the light bulbs.

2. Decide if there exists a way to flip the switches to turn on at least three-fourths of
the light bulbs.

Exercise C.60. Using only fact 9.3, show that for 2 ~ N (u,0?) and « € R,

or N./\/'(au,oz2 2).

Exercise C.61. Prove that the multilinear extension Fy (z) is multilinear function. (This
means that for all fixed x, and elements e € N, f(z + §1.) is a linear function in § over all
d such that z. + ¢ € [0, 1].)

Exercise C.62. Last week you decided to clean up your toolshed, but you compulsively
made the following silly mistake. Originally you had n matching pairs of nuts and bolts of
different sizes, but you decided to organize the nuts and bolts separately into a box full of
nuts and a box full of bolts, splitting up all the pairs of nuts and bolts in the process. So
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now you have n nuts, and n bolts, such that each nut fits a distinct bolt and vice-versa, but
you don’t know which nut goes with which bolt.

The bolts all look pretty similar, so you can’t compare two bolts
directly with each other and tell which one is bigger. Likewise
you cannot compare the nuts to each other. However, you can
try to fit one nut to one bolt, and see if either:

1. The nut fits the bolt.
2. The nut is too big for the bolt.

3. The nut is too small for the bolt.

We will treat one of these nut-to-bolt tests as a single operation. Your goal is to match
up all nuts and bolts. Of course you can compare every pair of nut and bolt in O(n?) time,
but can you do better?

Design and analyze an algorithm, as fast as possible, to recover all matching pairs of
nuts and bolts.

Exercise C.63. The goal of this exercise is to show how to get constant time access for n
keys with O(n) space, using only universal hash functions. We will require the following
fact that we ask you to prove.

1. Let h : [n] — [k] be a universal hash function. Show that for k& > n?, h has no
collisions with probability > 1/2.

Now we describe the data structure. We first allocate an array A[l..n] of size n. We
have one universal hash function hg into [n]. If we have a set of (say) k collisions at an array
cell Afi], rather than making a linked list of length &, and we build another hash table, with
a new universal hash function h;, of size k2, with no collisions (per part 1). (We may have
to retry if there is a collision.) If the total size (summing the lengths of the first arrray and
each of the second arrays) comes out to bigger than (say) 5n, we try again.

2. For each i =1,...,n, let k; be the number of keys that hash to the ith cell. We have

n
(sum of array sizes of our data structure) <n + Z k2.
i=1

Show that?’

n
Z k? < n 4 O(total # of collisions (w/r/t hg)).
i=1
ZHere a “collision” is an unordered pair of keys with the same hash. The O(---) means you can
choose whatever constant you find convenient; 2 is possible.
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3. Show that

Eltotal # of collisions (w/r/t ho)] < n/2.

4. Show that
P[(sum of all array sizes) > Cn] < 1/2
for some constant C' > 0. (C' =5 is possible.)

Taken together, steps 1 to 3 above show that this approach will build a “perfect” hash
table over the n keys in O(n) space with probability of success at least 1/2, using only
universal hash functions. Even if it fails to work, we can then keep repeating the construction
until it succeeds. This approach works better in static settings, when the set of keys is fixed.

Exercise C.64. Design and analyze a deterministic 3/4-approximation algorithm for
max-SAT.?0

Exercise C.65. Recall that we can obtain a O(log m)-approximation for set cover by
randomly rounding the LP. There are also natural special cases where the points and sets
have geometric structure; here we consider one such setting.

Suppose we have a set of m disks D = {di,...,d, CR?}, and n points P =
{p1,...,pn € R?}. We say that a point p; hits a disk D; if p; € D;. (You can assume
you can query if p; hits D; in O(1) time.) A set of points Q C P is a hitting set of D if
every disk is hit by some point in Q).

Consider the problem of computing the minimum cardinality hitting set @@ of D. This
is a special case of set cover, where points “cover” the disks that they hit. Design and
analyze a (polynomial-time) approximation algorithm for this problem. Here, the smaller
the approximation ratio, the better, but we will not emphasize constant factors. (Yes, you
can do better than O(logm).)

Exercise C.66. Suppose you are going to the graduate student social thingy on the 3rd
floor of Lawson.?” You can get to the third floor by either an elevator or the stairs. The
elevator takes 15 seconds (once you get in), while the stairs take 2 minutes. Your goal is to
get up to the third floor as fast as possible before the donuts are all taken.

You press the button to go up for the elevator. You don’t know how long it will take to
come down. Do you wait or take the stairs?

26You may first want to design and analyze a deterministic (1 — 1/e)-approximation algorithm for
max-SAT.
27(It used to be on the third floor.)
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1. Suppose you knew how long the elevator would take to arrive. What is the optimal
choice, based on this wait?

2. Now suppose you don’t know how long the elevator would take. Design a deterministic
algorithm that is (15/8)-competitive with the optimal solution (where you know how
long the elevator would take).

3. Suppose you have a quarter in your pocket, which lands heads or tails with equal
probability. You can toss the coin once every 15 seconds. Design a randomized
algorithm with a (slightly) better competitive ratio than the (best) deterministic one
from the previous question.”®

Exercise C.67. For the n-vertex cycle C),, describe a randomized tree metric where each
edge has expected stretch O(1).

Exercise C.68. Let X,Y be two independent and identically distributed real random
variables. Prove that P[|X — Y| <2] <3P[||X - Y| <1]].

Exercise C.69. Prove Lemma 11.4.

Exercise C.70. Let G = (V, E) be an undirected graph with m edges and n vertices, vertex
weights w : V' — Rsg, and maximum (unweighted) vertex degree A. Welet W =3~ i, w(v)
denote the total weight of all the vertices.

Recall than an independent set is a set of vertices S C V such that no two vertices
in S are connected by an edge. Computing the maximum cardinality independent set is
NP-Hard. In fact, for all € > 0, it is NP-Hard to get a 1/n'~“-approximation to the maximum
cardinality independent set. (Of course, computing the maximum weight independent set is
no easier.)

Consider the following algorithm that always returns a maximal independent set:

randomized-greedy(G = (V, E),w)

1. Order the vertices vy, ..., v, uniformly at random.
2. S« 0.
3. Fori=1,...,n:

A. If S + v; is independent, then set S <+ S + v;.

4. Return S.
281 actually don’t know what the best competitive ratio would be, and I'm interested to see what
everyone comes up with.
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1. (6 points) Analyze the approximation ratio of randomized-greedy, as a function of
the maximum degree A.

2. (4 points) Derandomize randomized-greedy. That is, design and analyze a determinis-
tic polynomial-time algorithm that outputs an independent set with weight at least as
good as the expected weight of the independent set returned by randomized-greedy.

Exercise C.71. Prove that the O(log n) bound is tight for tree metrics (up to constants).
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Appendix D

CS588: Syllabus, Policies, and Procedures

Welcome to CS588, which is about randomized algorithms. Please see the schedule (Page 1)
for a tentative list of topics. The class will be similar to the Fall 2024 course (cf. https:
//fundamentalalgorithms.com/randomized/f24).

Lectures are delivered on

Tuesday and Thursday, from 4:30 to 5:45 PM, in Forney Hall, Room G124.

Please take advantage of class time and office hours to ask questions or express any
concerns. Please reserve email only for true emergencies, which I do not expect to arise.

The lectures are accompanied by lecture notes (usually one chapter per lecture) and you
are expected to be informed of their contents. I am (tentatively) planning to record the
lectures and put them online (say, by the end of the week), as well as upload handwritten
slides from the lecture. Links to these resources are provided at the end of each lecture. I
caution that the recordings are meant to supplement in-class lectures and should not be
regarded as a substitute.

If you are unable to register for the class because it is full, just wait. Historically,
slots have always opened up. You can attend class, add yourself to gradescope and submit
homework in the meantime.

D.1 Textbooks

No textbook is strictly required as lecture notes' are provided. That said, the most closely
aligned textbook with our course is:

e Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995

Other books and monographs overlapping with the course include:
e Noga Alon and Joel H. Spencer. The Probabilistic Method. 4th. Wiley Publishing,
2016

!The notes were first written in Fall 2020 to compensate for remote learning.
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Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. URL:
https://doi.org/10.1017/CB09780511813603

Salil P. Vadhan. “Pseudorandomness”. In: Foundations and Trends in Theoretical
Computer Science 7.1-3 (2012), pp. 1-336. URL: https://people.seas.harvard.edu/
~salil/pseudorandomness/pseudorandomness-published-Dec12.pdf

Jelani Nelson. “Sketching Algorithms”. Lecture notes. Dec. 2020. URL: https:
//www.sketchingbigdata.org/fall2@/lec/notes.pdf

David P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: Found.
Trends Theor. Comput. Sci. 10.1-2 (2014), pp. 1-157. URL: https://doi.org/10.
1561/0400000060

Daniel A. Spielman. “Spectral and Algebraic Graph Theory”. Draft. 2019. URL:
https://www.cs.yale.edu/homes/spielman/sagt/sagt.pdf

Luca Trevisan. Lecture Notes on Graph Partitioning, Expanders, and Spectral Methods.
Spring 2016. URL: https://lucatrevisan.github.io/books/expanders-2016.pdf
Sariel Har-Peled. Geometric Approzimation Algorithms. USA: American Mathemati-
cal Society, 2011

The following courses from other institutions also have lecture notes that you may find
helpful.

D.2

Randomized algorithms, taught by David Karger at MIT. http://courses.csail.mit.
edu/6.856/current/

Randomized algorithms, taught by Sariel Har-Peled at UIUC. https://sarielhp.org/
teach/17/b/

Randomized algorithms, taught by Anupam Gupta and Avrim Blum at CMU. http:
//www.cs.cmu.edu/~avrim/Randalgs11/index.html

Randomized algorithms and probabilistic analysis, taught by Greg Valiant at Stanford.
http://theory.stanford.edu/~valiant/teaching/CS265/index.html

Algorithms for Big Data, taught by Chandra Chekuri at UTUC. https://courses.
engr.illinois.edu/cs498abd/fa2020/.

Correspondence

The course website is

www . fundamentalalgorithms. com/randomized,

where this document is posted.

Email. Please reserve emails to the instructor for true emergencies. Please use class time
or office hours to ask questions or express concerns.
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Piazza. There is a Piazza for the course at the following address.
https://piazza.com/purdue/fall2025/cs588
The point of Piazza is to foster discussion among the students. The TA will monitor Piazza

regularly (but not continuously) on weekdays during reasonable hours.

D.3 Grading

o 30% Homework
e 30% Midterm

e 40% Final

We compute numerical scores based on the weighting above (as a fractional value between
0 and 1), and then we curve the grades.

D.4 Exams

The midterms and final are each one part multiple choice and one part word problems. We
have reserved classrooms through the school to give students an extended period of time for
the tests.

D.4.1 What’s on the midterm?

I have not made the test yet, so I cannot speak with much certainty. That said, two broad
goals are:

1. Help identify weak points in each student’s understanding of the material, so we can
address them.

2. (Gently) incentivize the class to learn all the material, stay engaged, etc.

So I plan to try to cover everything we’ve covered, including the material the week
before the exam (though perhaps slightly less emphasized). I expect to have a mix of
multiple-choice or short-answer problems and a few longer word problems.

I will also prepare some kind of cheat sheet with all the inequalities we use, such as
Markov’s inequality, Chernoff’s inequality, etc. I will send everyone this cheat sheet before
the exam.

Here are some ways to practice and study:

o Reviewing the lectures (obviously).
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e Making sure you understand the solutions to the homework, even if you didn’t get
them right the first time.

e There are many more problems in the notes that I did not assign. While we do not
provide solutions for them, I can quickly tell you in person if you are on the right
track for any of them. I also encourage students to discuss solutions with one another;
perhaps over Piazza.

e The notes include essentially all problems that I have given in past exams.

e I may have problems like “Prove Chebyshev’s inequality” or “Prove the multiplicative
Chernoff bound (for any constant in the exponent).” So I would learn the proofs of
some of these basic tools.

e For some of the recent lectures, it may be helpful to at least attempt the problems in
the homework, even if they are not due until after the midterm. The problems are
meant to help you understand the material.

e More problems can be found in the Motwani-Raghavan book. Even if we often covered
different algorithms, you can still find exercises about more general themes; e.g.,
conditional probability, linearity of expectation, concentration bounds, etc.

e I found a practice final from Sariel’s website here. https://sarielhp.org/teach/17/
b/sp14/sp14_final.pdf

D.5 Homework

This course has regular homework, generally due every two weeks (with the exception of
homeworks 0 and 1.) Homeworks will be due at 11:59PM on Thursday nights.

Typesetting. Homework submissions that are not typeset in ITEX or equivalent will not
be graded. Some tips on typesetting are listed below. A simple Overleaf template is set up
at https://www.overleaf.com/read/fczzqgbftywcp.

On writing. The onus is on the student to make the arguments in their solution clear,
and points will be docked if the grader cannot easily verify that the solution is correct. The
class is as much about communicating complicated ideas as solving problems and applying
techniques. Particularly clear exposition may be selected as homework solutions which is
rewarded with extra credit (see below).

Here are some articles about writing:

o Terry Tao: https://terrytao.wordpress.com/advice-on-writing-papers/.

o Cormac McCarthy: https://www.nature.com/articles/d41586-019-02918-5. (Ac-
cessible via school library.)
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I USED TO HATE WRITING
ASSIGNMENTS , BUT Now

T ENJOY THEM.

I REALIZED THAT THE
PURPOSE OF WRITING IS
TO INFLATE WEAK IDEAS,
ORSCURE POOR REASONING,
AND INHIBIT CLARITY.

WITH A LITTLE PRACTICE,
WRITING CAN RE AN
INTIMIDATING  AND
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Gradescope (subject to change). The word problems will be collected online at
gradescope.com. The multiple choice questions will be posted on gradescope.com. as well.
If you are registered for the course on BrightSpace, then you should have been automatically
added to gradescope. Otherwise you can add yourself with the code 7X7WXK.

Collaboration. Collaboration is allowed and interaction among students is encouraged.
Currently we are allowing up to three students per submission. Please also indicate any
other students (outside your group) that you may have worked on the problems with.

Dropping scores. In the overall homework grade, the bottom one-fifth of word problem
scores will be dropped. More precisely, if there are n total world problems assigned in
homework, then the [n/5] lowest scores will be dropped. This is largely to help cover the
arbitrary exceptions that arise throughout a semester.

Late policy (subject to change). For word problems, we have a simple late policy
where you can submit up to 12 hours late, at a cost of 10% of the total points.

There are no exceptions to the late policy. We expect the [n/5]-dropped scores to
absorb most scenarios that arise; besides, 35% off is not the end of the world.

In rare circumstances accompanied by documentation by the Dean of Students we may
instead give a 0/0 for all problems on that assignment.

We plan to put up the solutions quickly after the homework is collected.

Selected solutions. The staff will select exemplary submissions and publish them as
solutions. If you have a strong preference to be excluded from consideration for a particular
homework problem, please indicate it clearly and explicitly at the top of your submission
(for each problem). For this reason, please leave your student ID off of your submission. If
you have a strong preference to be anonymous if your homework is selected, please indicate
that on your document.

Selected solutions will get 10% extra credit.

Self-grading In part because of a very high ratio of students to staff, we are experimenting
with a new (pseudo-) self-grading system. The idea is as follows:

1. After you submit the homework on gradescope, we will post solutions and rubrics (in
Chapter B or on Piazza).
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2. A week after the first submission deadline, you will grade your own submission based
on the posted rubric, and upload the same submission (we will check!) with your
self-grading appended at the end. This includes:

(a) Numerical score broken down according to the rubric.

(b) Additional comments as needed (e.g., explaining why you gave yourself half-credit,
high-level description on what went awry, etc.)

Tanmay and Zilin will then use the self-grading as a guide when he actually grades your
submission. We expect you to be honest in your self-grading and we will be annoyed and
disappointed if you aren’t.

On a case by case basis, the rubrics for a problem may be based on a particular solution
differing from your approach, making it harder to apply the rubric. In this case we ask
you to try your best and be reasonable interpreting and adjusting the rubric to your case.
(Maybe some points, like stating the running time, still carry over. Maybe you can still get a
sense of how many of the points are for the implementation, and how many for the analysis,
and judge appropriately.) The key point is to save the grader’s time, while also nudging you
to critically evaluate your own submission and possibly learn from the posted solutions.

IDK. One may simply write “I don’t know” or “IDK” and automatically get 25% of the
possible points (for any problem or subproblem).

MOM SAID I CANT 60 OUTSIDE
UNTIL T FINISH MY HOMEWORK.,
\F YOU'lL HELP ME, T'lL BE
DONE FASTER. WHAT'S
FIVE PLUS SENEN?

THEN WRITE, | HEY, THAT'S A | | WED BETIER HAVE. A LOOK AT
"1 DON'T ) TRUE ANSHER, | | OUR PRODIGY'S HOMEWORK.
S ISNT\T! T

CAN WRITE THAT
FOR ALL OF

THESE ! WERE
OONE ¢

Regrades. Regrade request must be initiated within one week of the grades being returned.
Typesetting tips.

e The standard for typesetting mathematical and scientific articles is LaTeX. Even if
you do not know LaTeX now, you probably have to learn it sooner or later (and
certainly if you pursue graduate studies).
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e The instructor uses emacs to write LaTeX, but any editor will do. There is also a
website called overleaf.com for typesetting LaTeX.

o Alternatively, the open-source software marktext allows one to write LaTeX within a
markdown document, which is particularly easy to use.

e LyX is another popular latex editor that is WYSIWYG.

o There are several apps for scanning documents (e.g., when inserting pictures) that
are much better than taking a photo. The instructor uses scanbot, and other popular
apps include microsoft office lens, camscanner, and evernote scannable.

D.6 Academic integrity

Behavior consistent with cheating, copying, and academic dishonesty is not tolerated.
Depending on the severity, this may result in a zero score on the assignment or exam, and
could result in a failing grade for the class or even expulsion. Purdue prohibits “dishonesty
in connection with any University activity. Cheating, plagiarism, or knowingly furnishing
false information to the University are examples of dishonesty.” (Part 5, Section ITI-B-2-
a, University Regulations) Furthermore, the University Senate has stipulated that “the
commitment of acts of cheating, lying, and deceit in any of their diverse forms (such as the
use of substitutes for taking examinations, the use of illegal cribs, plagiarism, and copying
during examinations) is dishonest and must not be tolerated. Moreover, knowingly to aid and
abet, directly or indirectly, other parties in committing dishonest acts is in itself dishonest.”
(University Senate Document 7218, December 15, 1972). You are expected to read both
Purdue’s guide to academic integrity (http://www.purdue.edu/purdue/about/integrity_
statement.html) and Prof. Gene’s Spafford’s guide (http://spaf.cerias.purdue.edu/
integrity.html) as well. You are responsible for understanding their contents and how it
applies to this class.

D.7 Posting Class Material
Posting material associated with this class (e.g., solutions to homework sets or exams)

without the written permission of the instructor is forbidden and may be a violation of
copyright.

D.8 Purdue’s Honor Pledge

As a boilermaker pursuing academic excellence, I pledge to be honest and true in all
that I do. Accountable together - we are Purdue. https://www.purdue.edu/provost/
teachinglearning/honor-pledge.html.
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D.9 Grief Absence Policy

Purdue University recognizes that a time of bereavement is very difficult for a student. The
University therefore provides the following rights to students facing the loss of a family
member through the Grief Absence Policy for Students (GAPS). According to GAPS Policy,
students will be excused for funeral leave and given the opportunity to earn equivalent credit
and to demonstrate evidence of meeting the learning outcomes for missed assignments or
assessments in the event of the death of a member of the student’s family.

D.10 Conduct and Courtesy

Students are expected to maintain a professional and respectful classroom environment.
This includes: silencing cellular phones, arriving on time for class, speaking respectfully to
others and participating in class discussion. You may use non-disruptive personal electronics
for the purpose class participation (e.g., taking notes).

D.11 Students with Disabilities

Purdue University is required to respond to the needs of the students with disabilities as
outlined in both the Rehabilitation Act of 1973 and the Americans with Disabilities Act
of 1990 through the provision of auxiliary aids and services that allow a student with a
disability to fully access and participate in the programs, services, and activities at Purdue
University. If you have a disability that requires special academic accommodation, please
make an appointment to speak with the instructor within the first three (3) weeks of the
semester in order to discuss any adjustments.

It is the student’s responsibility to notify the Disability Resource Center (http://www.
purdue.edu/drc) of an impairment/condition that may require accommodations and/or
classroom modifications. We cannot arrange special accommodations without confirmation
from the Disability Resource Center.

D.12 Emergencies

In the event of a major campus emergency, course requirements, deadlines and grading
percentages are subject to changes that may be necessitated by a revised semester calendar
or other circumstances beyond the instructor’s control. Relevant changes to this course
will be posted onto the course website and/or announced via email. You are expected to
read your purdue.edu email on a frequent basis. Emergency Preparedness: Emergency
notification procedures are based on a simple concept: If you hear an alarm inside, proceed
outside. If you hear a siren outside, proceed inside. Indoor Fire Alarms are mean to
stop class or research and immediately evacuate the building. Proceed to your Emergency
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Assembly Area away from building doors. Remain outside until police, fire, or other
emergency response personnel provide additional guidance or tell you it is safe to leave. All
Hazards Outdoor Emergency Warning sirens mean to immediately seek shelter (Shelter
in Place) in a safe location within the closest building. “Shelter in place” means seeking
immediate shelter inside a building or University residence. This course of action may
need to be taken during a tornado, a civil disturbance including a shooting or release of
hazardous materials in the outside air. Once safely inside, find out more details about
the emergency. Remain in place until police, fire, or other emergency response personnel
provide additional guidance or tell you it is safe to leave. In both cases, you should
seek additional clarifying information by all means possible: Purdue Home page, email
alert, TV, radio, etc. Review the Purdue Emergency Warning Notification System multi-
communication layers at http://www.purdue.edu/ehps/emergencypreparedness/warning-
system.html. Please review the Emergency Response Procedures at https://www.purdue.
edu/emergencypreparedness/flipchart/index.html. Please review the evacuation routes,
exit points, emergency assembly area and shelter in place procedures and locations for
the building. Video resources include a 20-minute active shooter awareness video that
illustrates what to look for and how to prepare and react to this type of incident. See
http://www.purdue.edu/securepurdue/police/video/

D.13 Violent Behavior Policy

Purdue University is committed to providing a safe and secure campus environment for
members of the university community. Purdue strives to create an educational environment
for students and a work environment for employees that promote educational and career
goals. Violent Behavior impedes such goals. Therefore, Violent Behavior is prohibited in or
on any University Facility or while participating in any university activity.

D.14 Mental Health and Wellness

If you find yourself beginning to feel some stress, anxiety and/or feeling
slightly overwhelmed, try Therapy Assistance Online (TAO) (https://www.purdue.
edu/caps/students/resources/self-help/digital/tao.php), a new web and app-based
mental health resource available courtesy of Purdue Counseling and Psychological Services
(CAPS). TAO is available to students, faculty, and staff at any time.

If you need support and information about options and resources, please contact
or see the Office of the Dean of Students (www.purdue.edu/odos). Call 765-494-1747. Hours
of operation are M-F, 8 am- 5 pm.

If you find yourself struggling to find a healthy balance between academics,
social life, stress, etc. sign up for free one-on-one virtual or in-person sessions with a
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Purdue Wellness Coach at RecWell (https://www.purdue.edu/recwell/fitness-wellness/
wellness/one-on-one-coaching/wellness-coaching.php). Student coaches can help you
navigate through barriers and challenges toward your goals throughout the semester. Sign
up is completely free and can be done on BoilerConnect. If you have any questions, please
contact Purdue Wellness at evans240@purdue.edu.

If you’re struggling and need mental health services: Purdue University is
committed to advancing the mental health and well-being of its students. If you
or someone you know is feeling overwhelmed, depressed, and/or in need of mental health
support, services are available. For help, such individuals should contact Counseling and
Psychological Services (CAPS) (https://www.purdue.edu/caps/) at 765-494-6995 during
and after hours, on weekends and holidays, or by going to the CAPS office on the second
floor of the Purdue University Student Health Center (PUSH) during business hours.
Purdue University is committed to advancing the mental health and well-being of its
students. If you or someone you know is feeling overwhelmed, depressed, and/or in need
of support, services are available. For help, such individuals should contact Counseling
and Psychological Services (CAPS) at (765) 494-6995 and http://www.purdue.edu/caps/
during and after hours, on weekends and holidays, or through its counselors physically
located in the Purdue University Student Health Center (PUSH) during business hours.

D.15 Health in general

In general, if medical conditions prohibit you from participating in the class, please be
proactive in seeking professional medical care. The link to the Purdue University Student
Health Center (PUSH) is listed below:

https://www.purdue.edu/push/.

In cases falling under excused absence regulations, the student or the student’s representative
should contact or go to the Office of the Dean of Students (ODOS, https://www.purdue.
edu/advocacy/students/absence-policies.html) website to complete appropriate forms
for instructor notification. Under academic regulations, excused absences may be granted
by ODOS for cases of grief/bereavement, military service, jury duty, parenting leave, or
emergent or urgent care medical care.

No one on the teaching staff is qualified to make any kind of diagnosis, and we rely the
dean of students (who are suppose to be able to handle medical situations) to document
serious medical cases and provide us with instructions when applicable. We have recourse
policies in place for documented illness.
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D.16 Basic needs and security

Any student who faces challenges securing their food or housing and believes this may affect
their performance in the course is urged to contact the Dean of Students for support. There is
no appointment needed and Student Support Services is available to serve students 8 a.m.-5
p-m. Monday through Friday. Considering the significant disruptions caused by the current
global crisis as it relates to COVID-19, students may submit requests for emergency assistance
from the Critical Need Fund (https://www.purdue.edu/odos/resources/critical-need-
fund.html).

D.17 Nondiscrimination

Purdue University is committed to maintaining a community which recognizes and values
the inherent worth and dignity of every person; fosters tolerance, sensitivity, understanding,
and mutual respect among its members; and encourages each individual to strive to reach
his or her own potential. In pursuit of its goal of academic excellence, the University seeks
to develop and nurture diversity. The University believes that diversity among its many
members strengthens the institution, stimulates creativity, promotes the exchange of ideas,
and enriches campus life. Purdue University prohibits discrimination against any member
of the University community on the basis of race, religion, color, sex, age, national origin or
ancestry, marital status, parental status, sexual orientation, disability, or status as a veteran.
The University will conduct its programs, services and activities consistent with applicable
federal, state and local laws, regulations and orders and in conformance with the procedures
and limitations as set forth in Executive Memorandum No. D-1, which provides specific
contractual rights and remedies.

D.18 Privacy

The Federal Educational Records Privacy Act (FERPA) protects information about students,
such as grades. If you apply for a job and wish to use the instructor as a reference, you
should tell the instructor beforehand. Otherwise, the instructor cannot say anything about
you to a prospective employer who might call. The instructor is happy to provide references
and to write letters of recommendation for his students as needed.

D.19 Netiquette

We want to foster a safe online learning environment. All opinions and experiences, no matter
how different or controversial they may be perceived, must be respected in the tolerant
spirit of academic discourse. You are encouraged to comment, question, or critique an idea,
but you may not attack an individual. Our differences, some of which are outlined in the
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University’s nondiscrimination statement below, will add richness to this learning experience.
Please consider that sarcasm and humor can be misconstrued in online interactions and
generate unintended disruptions. Working as a community of learners, we can build a polite
and respectful course ambience. Please read the Netiquette rules for this course:

o Monitor how much space/time you are taking up in any discussion. Give other
students the opportunity to join in the discussion.

e Do not use offensive language. Present ideas appropriately.

e Be cautious in using Internet language. For example, do not capitalize all letters since
this suggests shouting.

o Avoid using vernacular and/or slang language. This could lead to misinterpretation.
e Keep an “open-mind” and be willing to express even your minority opinion.

e Think and edit before you push the “Send” button.

e Seek and take in feedback from others; learning from other people is an important life

skill.

D.20 Changes to the syllabus

This syllabus is subject to change and changes will be announced appropriately.
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